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Abstract— The paper presents experimental comparison of two
approaches introduced for solving the nonlinear blind source
separation (BSS) problem: the Bayesian methods developed at
Helsinki University of Technology (HUT), and the BSS methods
introduced for post-nonlinear (PNL) mixtures at Institut Nationa l
Polytechnique de Grenoble (INPG). The comparison is performed
on artificial test problems containing PNL mixtures. Both the
standard case when the number of sources is equal to the
number of observations and the case of overdetermined mixtures
are considered. A new interesting result of the experiments is
that globally invertible PNL mixtures, but with non-invertible
component-wise nonlinearities, can be identified and sources can
be separated, which shows the relevance of exploiting more
observations than sources.

I. I NTRODUCTION

Different approaches proposed for nonlinear independent
component analysis (ICA) and blind source separation have
been recently reviewed in [1]. However, their limitations and
domains of preferable application have been studied only a
little, and there are hardly any comparisons of the proposed
methods. We have experimentally compared two approaches
for nonlinear BSS: the Bayesian methods developed at the
Neural Network Research Centre at HUT and the BSS meth-
ods introduced for the special case of post-nonlinear mixtures
at INPG in France. The two methods have been derived from
rather different perspectives but they can both be applied to
the same nonlinear ICA problems.

The Bayesian methods of HUT deal with a general form of
the nonlinear mixing model:

x(t) = f(s(t)) + n(t) (1)

wheref is a nonlinear mapping from the source signalss to
the observed signalsx. The dimensions of the vectorss(t)
andx(t) are generally different, and often the dimensionality
of s(t) is smaller. The BSS problem is solved by finding a
compact nonlinear representation of the observationsx. The
sources are modeled either by the Gaussian or the mixture-
of-Gaussians model and the generative model (1) is learned
according to the variational Bayesian principle.

The PNL methods of INPG consider a specific form of

nonlinear mixtures called post-nonlinear mixtures:

xi(t) = fi(
∑

j

aijsj(t)) i = 1, . . . , n (2)

where aij are the elements of the unknown mixing matrix
A and fi are a set of scalar to scalar functions. It is usually
assumed that the vectorss(t), x(t) are of the same dimension-
ality and the PNL distortionsfi are invertible. In this case,
the BSS problem can be solved based upon the assumption of
the statistical independence of the sources [1]: Under certain
conditions on the distributions of the sources (at most one
Gaussian source) and the mixing structure (A has at least 2
nonzero entries on each row or column), PNL mixtures are
separable with the same well-known indeterminacies as in the
linear mixtures [2].

In contrast to the Bayesian HUT methods, the PNL methods
of INPG find the inverse of the generative model (2) using the
separating structure

si(t) =
∑

j

bijgj(xj(t),θj) i = 1, . . . , n .

The purpose of the present work is to compare how the
two alternative approaches perform in the same BSS prob-
lems. Since the Bayesian methods deal with a more general
nonlinear mixing, we use PNL mixtures as test problems. The
important question that is addressed in the paper is what are
the limitations and preferable application domains of the two
approaches.

II. BAYESIAN AND CONSTRAINED STRUCTUREPNL
METHODS

A. Bayesian BSS methods developed at HUT

The Bayesian algorithms presented in [3], [4], [5], [6]
assume a very general model in which the observations are
generated by a nonlinear mappingf from the sources as shown
in (1). The nonlinear mappingf is modeled by a multilayer
perceptron (MLP) network with two layers:

f(s(t)) = D tanh(Cs(t) + c) + d (3)

whereC, c and D, d are the weight matrices and biases of
the hidden and output layers respectively. Here and in the



following, functions tanh and exp are applied component-
wise to the elements of their vector arguments.

Implementing the Bayesian approach, all the unknown vari-
ablesθ in the model including the sources, the noise param-
eters and the parameters of the MLP network are assigned
hierarchical priors. For example, the noise is assumed to be
independent and Gaussian, which yields the likelihood

x(t) ∼ N ( f(s(t)), exp(2vn) )

whereN(µ, σ2) denotes a Gaussian density with meanµ and
varianceσ2. All components of the noise parametervn share
a common Gaussian prior:

vn,i ∼ N (mvn
, exp(2vvn

) ) ,

and the hyperparametersmvn
, vvn

have very flat Gaussian
priors.

The goal of the Bayesian methods is to estimate the poste-
rior pdf of all the unknown variablesθ. In the considered
methods, this is done by variational Bayesian learning [7]
which amounts to fitting a simple, parametric approximation
q(θ) to the actual posterior pdfp(θ|X)1. The misfit between
the approximation and the true posterior is measured by the
Kullback-Leibler divergenceD(q(θ) ‖ p(θ|X)) which yields
a cost function of the form

C =

∫
q(θ) log

q(θ)

p(X,θ)
dθ

= D(q(θ) ‖ p(θ|X)) − log p(X) ≥ − log p(X) . (4)

As follows from (4), the cost function gives a lower bound
for the model evidencep(X) which can be used for model
selection [7].

In order for the cost function to be computable in practice,
the maximally factorial Gaussian approximation is used

q(θ) =
∏

i

q(θi) =
∏

i

N(θi | θi, θ̃i) .

The update rules for the posterior meansθi and variances̃θi

can be derived by differentiating (4), which yields a fixed-
point iteration forθ̃i and an approximate Newton iteration for
θi [3], [4]. The optimal posterior meansθi of the unknown
parameters usually define the solution of the BSS problem.

The basic Bayesian algorithm presented in [3] is called
nonlinear factor analysis (NFA). It uses Gaussian prior for
the sources:

s(t) ∼ N ( 0, exp(2vs) )

and therefore does not provide independent source signals.The
nonlinear ICA problem can then be solved by exploiting the
idea somewhat similar to Gaussianization of factors in PNL
mixtures [8]: The Gaussian factors found by NFA are further
rotated by FastICA [9] to obtain independent source signals.
We will further refer to this nonlinear ICA method as the
NFA+FastICA approach.

1Here we denote byX = {x(t) | t = 1, . . . , T} the set ofT available
observations.

The quality of the NFA+FastICA solution can still be
improved by using a mixture-of-Gaussians model for the
sources. The resulting model is called nonlinear independent
factor analysis (NIFA) [4] being a nonlinear counterpart of
independent factor analysis [10]. We shall however use the
computationally more efficient NFA+FastICA approach in the
comparison.

The software implementation of the Bayesian BSS algo-
rithms and the FastICA algorithm is available at [11] and [12]
respectively.

B. PNL ICA methods developed at INPG

Assuming the PNL structure (2) of the observed signals, the
BSS methods developed at INPG [2], [13] recover independent
sources using a separation structure which consists of two
subsequent parts:

1) A nonlinear stage, which should cancel the nonlinear
distortions fi. This part consists of nonlinear scalar
functionszi = gi(xi,θi).

2) A linear stage that separates the approximately linear
mixtures z obtained after the nonlinear stage. This is
done as usual by learning ann× n demixing matrixB
for which the components of the output vectory = Bz

of the separating system are statistically independent (or
as independent as possible).

In both stages, the mutual informationI(y) between the
componentsy1, . . . , yn of the output vector is used as the cost
function and the independence criterion.

For the linear part, minimization of the mutual information
leads to the same estimation equations as for linear mixtures:

∂I(y)

∂B
= −E

{
ψ(y)zT

}
−

(
BT

)−1

(5)

where componentsψi of the vector ψ(y) are the score
functions ofyi:

ψi =
d

du
log pi(u) =

p′i(u)

pi(u)
.

Here pi(u) is the pdf andp′i(u) its derivative. The practical
learning rule to estimateB is the natural gradient algorithm

B(t+ 1) = (I + λH)B(t) (6)

with H = I + E
{
ψ(y)yT

}
.

The gradient learning rule for the nonlinear stage can be
derived from the estimating equations:

∂I(y)

∂θk

= − E

{
∂ log |g′k(xk,θk)|

∂θk

}

− E

{
n∑

i=1

ψi(yi)bik
∂gk(xk,θk)

∂θk

} (7)

where xk is the k-th component of the observation vector,
bik is the elementik of the demixing matrixB, and g′k is
the derivative of thek-th nonlinear functiongk. The exact
computation algorithm depends on the specific parametric
form of the nonlinear mappinggk(xk,θk).



The equations (5), (7) for the derivatives ofI(y) contain the
score functionsψi which are not known and must be estimated
(adaptively) from the output vectory. In the present work, we
used the batch algorithm proposed in [13] with the Gaussian
kernel density estimator for calculatingψi. We will further
refer to this approach as the PNL ICA algorithm.

The speed of the algorithm can be increased by using a
relevant initialization of the parameters based on the Gaus-
sianization ofz [14]. In the simplest approach, thek-th scalar
function gk is initialized by

gk = Φ−1 ◦ Fk (8)

whereΦ is the Gaussian cumulative density function (cdf) and
Fk is the cdf of thek-th observationxk.

The software implementation of the PNL ICA algorithm is
available athttp://www.lis.inpg.fr/demos/sep_
sourc/ICAdemo/.

III. C OMPARISON EXPERIMENTS

The nonlinear BSS problems are not well known and there
are interesting phenomena to uncover even in low-dimensional
mixtures. Furthermore, the nonlinear methods are usually
computationally quite expensive and often suffer from the
local minima problem, which usually requires several runs of
an algorithm using different initializations of the estimated
parameters. Therefore, we used PNL mixtures of only two
independent sources in most of the presented experiments. In
the experiments with two sources, the sources were a sine
wave and uniformly distributed white noise.

Additionally, the two BSS approaches were compared on
PNL mixtures of four sub-Gaussian sources which were uni-
formly distributed white noise.

The test datax were generated by mixing the simulated
source signals using a randomly chosen mixing matrixA and
applying component-wise nonlinear distortionsfi to the linear
mixture as in (2). The data were then centered and normalized
to unit variance. In the experiments with noisy mixtures, the
observation noise with standard deviationσn was added. The
number of samples was 400 in all experiments.

The generated test data were processed by the two alterna-
tive methods. The number of hidden sources was always set
to the known value (m = 2 or m = 4) for both algorithms.

In the PNL ICA algorithm, different values of the spread
parameterσ of the Gaussian kernel density estimator were
used. The adaptation steps wereµ = 0.1 for the outputs of the
nonlinear stage andλ = 0.1 for the demixing matrixB (see
[13] for more details). The results with the maximum signal-
to-noise (SNR) ratio of the recovered sources were used in the
comparison.

The NFA solution was found by trying different model
structures, i.e. different number of neurons in the hidden layer
of the MLP (3), and several random initializations of the
parametersθi, θ̃i to be optimized. The model with the smallest
value of the cost function (4) was chosen as the NFA solution.
The sources of the best NFA model were further rotated by
FastICA as we explained earlier.
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Fig. 1. Experiment A. The distribution of the observations. The thick points
represent the noiseless reconstructionf(s) of the datax found by the NFA
algorithm.
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Fig. 2. Experiment A. The sources found by the PNL ICA method: (a) –
the scatter plots; (b) – the estimated time series; (c) – the distribution of the
sources. Signal-to-noise ratio is 20.78 dB.

A. PNL mixtures of the same dimensionality

The most common assumption of the existing linear ICA
methods as well as the considered PNL ICA algorithm is that
the number of observed mixturesn is equal to the number
of hidden sourcesm. Therefore, we started the comparison
experiments by applying the two compared methods to this
type of mixtures.

Experiment A. The two independent sources were mixed
using the following PNL mapping:

x =

[
tanh(y1)
tanh(y2)

]
y =

[
1.0 0.4
0.7 1.0

]
s .

Note that all the post-nonlinear distortions were invertible
and no observation noise was added to the mixtures. The
distribution of the observed signalsx is shown in Fig. 1.

The simulation results presented in Fig. 2 show that the PNL
ICA method of INPG performs perfectly in this problem. The
scatter plot (Fig. 2a) shows how well the original sources were
reconstructed. Each point corresponds to one sourcesi(t). The
abscissa of a point is the original source which was used for
generating the data and the ordinate is the estimated source.
The optimal result would be a straight line which would mean
that the estimated values of the sources coincide with the true
values.

In contrast, the NFA+FastICA fails to recover the original
sources in this problem. The noiseless reconstruction of the
data shown in Fig. 1 indicates that the best NFA model uses
only one out of two sources: One of the two sources was set
to zero by the algorithm, which yielded the one-dimensional



TABLE I

SIGNAL -TO-NOISE RATIO OF FOUR SUB-GAUSSIAN SOURCES RECOVERED

FROM n NOISY PNL MIXTURES.

Noise variance PNL ICA NFA+FastICA

σ2
n

n = 4 n = 8 n = 8

0 18.73 19.18 14.53

0.01 10.47 15.42 13.27

0.1 1.76 8.05 6.9

manifold shown by the thick line in Fig. 1. The deviations
from that line were explained as the observation noisen(t).

This result suggests that the ICA problems with the number
of mixtures equal to the number of sources is difficult for the
presented NFA+FastICA approach: The variational NFA algo-
rithm usually tends to find a manifold of a lower dimension
than the dimension of the observation space. This problem
could be overcome by requiring the observation noise to be
small (e.g. by fixing the noise variancevs to small values) but
this would significantly slow down the learning process.

We also applied the PNL ICA algorithm to test problems
with four noisy PNL mixtures of four sub-Gaussian sources.
The following post-nonlinear distortions were used for gener-
ating the data:

f1(y) = tanh(y/4) f2(y) = 0.3y + tanh(y)

f3(y) = 10y + y3 f4(y) = −0.3y − tanh(y) (9)

and the observation noise with different values of the noise
varianceσ2

n was added. The results of these experiments are
presented in the second column of Table I. They demonstrate
that the PNL ICA algorithm can be applied to noisy mixtures
as well but its performance naturally deteriorates when the
noise level increases.

B. Overdetermined PNL mixtures with invertible post-
nonlinear distortions

In the following experiments, we consider PNL mixtures
with the number of observationsn greater than the number of
sourcesm. This case is usually referred as the overdetermined
BSS (or undercomplete bases) problem and it is particularly
suitable for applying the Bayesian BSS methods. On the
contrary, the standard PNL ICA algorithm requires some
adjustment.

The nonlinear stage does not need any changes but the
demixing matrixB in the linear stage should now be rect-
angular. However, Zhanget al. showed in [15] that the natural
algorithm for overdetermined mixtures can be simplified to the
standard learning rule (6) which can be used for estimating the
rectangularB.

In the linear stage, this approach amounts to projecting the
datay onto the subspace defined by the initialization ofB and
seeking for independent sources within this subspace. Thiscan
be shown using the QR decomposition ofBT = QR where
Q is a rectangular matrix such thatQTQ = I. Rewriting the

learning rule (6) yields

B(t+ 1) = R(t+ 1)TQT = (I + λH)R(t)TQT ,

which shows that only the partR rotating the projected data
QTz is updated.

Therefore, the initialization ofB is of great importance
for the natural gradient algorithm for overdetermined mix-
tures. For example, using the standard initialization of [13]
B(0) = [I 0] would be equivalent to using only the firstm
observations.

In the experiments, we used the initialization ofB using
principal component analysis (PCA): The rows ofB were
initialized with the firstm principal vectors found from the
normalized (and optionally Gaussianized with (8)) observa-
tions. Such initialization worked well in practice.

A possible alternative approach for the case of ICA for
overdetermined PNL mixtures could be using the approxi-
mation of the entropy of the outputsy proposed by Stone
and Porrill [16]. This would give a gradient based update
rule for B based on the pseudo-inverse ofB with respect
to the covariance matrix ofz. However, according to our
experiments, the natural gradient algorithm with the PCA
initialization seemed to outperform this approach in the cases
where the exact number of mixed signals is known a priori.

Experiment B. The following PNL mixtures of two indepen-
dent sources were used for generating the data:

x =




tanh(y1)
tanh(y2)
tanh(y3)


 y =




1.0 0.4
0.7 1.0
1.1 0.6


 s .

No observation noise was added.
The results provided by the PNL ICA algorithm and the

Bayesian approach for this mixture are presented in Fig. 3.
The PNL ICA algorithm works nicely and the quality of the
source restoration is now slightly better than in Experiment A.

The NFA+FastICA approach is also able to retrieve the
original sources but with a smaller signal-to-noise ratio than
the PNL ICA method. This is a natural result since the NFA
algorithm does not take into account the PNL structure of the
data, and the source estimation by NFA is not based on the
statistical independence of the sources.

The results of the experiments with overdetermined PNL
mixtures (n = 8) of four sub-Gaussian sources are presented
in the last two columns of Table I. The data were generated
using the four post-nonlinear distortions from (9) and other
four scalar functions which were same as in (9) but with the
opposite sign. The results show that both methods recovered
the original sources with SNR depending on the noise level.
The performance of the NFA+FastICA approach is again
slightly worse compared with the PNL ICA algorithm.

Note that adding more observations to noisy PNL mixtures
increased the SNR obtained with PNL ICA (compare the
results forn = 4 andn = 8). The results suggests that using
more observations in noisy mixtures improves the performance
of the PNL ICA algorithm while it is not necessarily true for
noiseless mixtures.
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PNL ICA: SNR is 22.14 dB
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Fig. 3. Experiment B. The sources found by the PNL ICA (above) and
NLFA+FastICA (below) approaches: (a) – the scatter plots; (b) – the estimated
time series; (c) – the distribution of the sources.

C. Overdetermined PNL mixtures with non-invertible post-
nonlinear distortions

The standard BSS methods for PNL mixtures reported
in [13], [2] usually assume the same dimensionality of the
vectors x and s and that all post-nonlinear distortions are
modeled by invertible functions. Under such conditions, the
entire PNL mapping is invertible and the source separation is
therefore possible. However, the following experiment shows
that overdetermined PNL mixtures can be invertible even if
some of the post-nonlinearities are modeled by non-invertible
functions. The higher dimensionality of the observed mixtures
is a necessary but not sufficient condition for that.

Experiment C. The PNL mapping used for generating the
data now contains one non-invertible post-nonlinearity:

x =




y2

1

tanh(y2)
tanh(y3)


 y =




1.0 0.4
0.7 1.0
1.1 0.6


 s . (10)

The two sources were mixed using (10) and no observation
noise was added to the data. The distribution of the observed
signals is presented in Fig. 4. It indicates that there exists a
bijection from the two-dimensional source space to the data
manifold in the three-dimensional observation space, i.e.the
entire PNL mapping is invertible.

The simulation result in Fig. 4b states that the PNL
ICA method could not cope with the non-invertible post-
nonlinearity. If the non-invertible (first) channel is taken into
consideration, the algorithm cannot provide a good solution.
Note that if only the last two observations are used, the
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Fig. 4. Experiment C. (a) – The distribution of the observations. (b) – The
distribution of the hidden sources found by PNL ICA. The PNL ICA algorithm
was not able to unfold the data manifold.
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Fig. 5. Experiment C. The sources found by the NLFA+FastICA approach:
(a) – the scatter plots; (b) – the estimated time series; (c) – the distribution
of the sources. Signal-to-noise ratio is 13.67 dB.

PNL ICA algorithm can recover the original sources (like in
Experiment A).

In this PNL problem, the NFA+FastICA approach clearly
outperforms the PNL ICA method (see the simulation results
in Fig. 5) because it does not invert the post-nonlinearities but
learns the entire generative model.

It is also possible to show that the entire PNL mapping
can be invertible even if several post-nonlinear distortions are
modeled with non-invertible functions. For example, we tested
three-dimensional PNL mixtures with two quadratic distor-
tions and the NFA+FastICA approach was able to recover the
two original sources.

IV. CONCLUSIONS

Based on the experimental results from Section III, we draw
the following conclusions on the applicability of the PNL ICA
and Bayesian NFA+FastICA approaches to post-nonlinear ICA
problems.

1) The PNL ICA method definitely performs better in
classical PNL mixtures with the same number of sources
and observations when all PNL distortions are invertible.

2) The performance of both methods can be improved by
exploiting more mixtures than the number of sources
especially in the case of noisy mixtures.

3) The performance of both methods in overdetermined
mixtures largely depends on good initialization of the
model parameters.

4) The advantage of the Bayesian methods in PNL prob-
lems is that they can separate PNL mixtures with
non-invertible post-nonlinearities provided that the PNL



mapping is globally invertible. The existing PNL ICA
methods cannot do this due to its constrained separation
structure.

5) The variational Bayesian methods are computationally
more expensive and usually require several runs with
different initializations as they often suffer from the
problem of local minima.

More generally, this preliminary study shows the relevance
of exploiting more observations than sources, especially in
the nonlinear mixtures. In that case, globally invertible PNL
mixtures, but with non-invertible component-wise nonlinear-
ities, can be identified and sources can be separated, which
is a new and interesting result. Independently, similar results
were reported by J. Lee in his PhD dissertation [17] where
he applied successfully a nonlinear mapping (for reducing the
dimensions) before ICA in such a model (globally but not
locally invertible).

These experimental results can be further investigated, for
improving understanding of the capabilities and the limitations
of the two alternative approaches. In the present work, we
did not try to cover all aspects of the compared methods.
The important questions that can be investigated are how the
algorithms scale to higher-dimensional problems with a larger
number of sources, what is the performance of the methods
for PNL mixtures of both sub-Gaussian and super-Gaussian
sources and others.
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