Bayesian versus Constrained Structure Approaches
for Source Separation in Post-Nonlinear Mixtures

Alexander llin Sophie Achard Christian Jutten
Neural Networks Research Centre Univ. of Grenoble Lab. des Images et des Signaux,
Helsinki University of Technology Lab. of Modeling and Computation, INPG
P.O. Box 5400, IMAG, C.N.R.S. 46 Avenue Elix Viallet,
FIN-02015 HUT, Espoo, Finland B.P. 53X, 38041 Grenoble Cedex, France 38031 Grenoble Cedex, France
E-mail: Alexander.llin@hut.fi E-mail: Sophie.Achard@imag.fr E-mail: Christian.Jutten@inpg.fr

Abstract— The paper presents experimental comparison of two nonlinear mixtures called post-nonlinear mixtures:
approaches introduced for solving the nonlinear blind source
separation (BSS) problem: the Bayesian methods developed at z;(t) = fi(z a;;s;5(t)) i=1,...,n (2
Helsinki University of Technology (HUT), and the BSS methods j
introduced for post-nonlinear (PNL) mixtures at Institut Nationa | . .
Polytechnique de Grenoble (INPG). The comparison is performed Where a;; are the elements of the unknown mixing matrix
on artificial test problems containing PNL mixtures. Both the A and f; are a set of scalar to scalar functions. It is usually
standard case when the number of sources is equal to the assumed that the vectas& ), x(¢) are of the same dimension-
number of observations and the case of overdetermined mixtures jity and the PNL distortions; are invertible. In this case,

are considered. A new interesting result of the experiments is .
that globally invertible PNL mixtures, but with non-invertible the BSS problem can be solved based upon the assumption of

component-wise nonlinearities, can be identified and sources canthe S.t'?‘tiStical indepgndgnge of the sources [1]: Underirert
be separated, which shows the relevance of exploiting more conditions on the distributions of the sources (at most one

observations than sources. Gaussian source) and the mixing structufe lfas at least 2
nonzero entries on each row or column), PNL mixtures are
|. INTRODUCTION separable with the same well-known indeterminacies asdn th

linear mixtures [2].

Different approaches proposed for nonlinear independentin contrast to the Bayesian HUT methods, the PNL methods
component analysis (ICA) and blind source separation hawBINPG find the inverse of the generative model (2) using the
been recently reviewed in [1]. However, their limitationsda separating structure
domains of preferable application have been studied only a _
little, and there are hardly any comparisons of the proposed  “i(t) = Zbijgﬂ'(zi(t)’eﬂ') i=1L...,n.
methods. We have experimentally compared two approaches J
for nonlinear BSS: the Bayesian methods developed at theThe purpose of the present work is to compare how the
Neural Network Research Centre at HUT and the BSS metho alternative approaches perform in the same BSS prob-
ods introduced for the special case of post-nonlinear méstu lems. Since the Bayesian methods deal with a more general
at INPG in France. The two methods have been derived frgmnlinear mixing, we use PNL mixtures as test problems. The
rather different perspectives but they can both be applied important question that is addressed in the paper is what are
the same nonlinear ICA problems. the limitations and preferable application domains of the t

The Bayesian methods of HUT deal with a general form @Pproaches.

the nonlinear mixing model: Il. BAYESIAN AND CONSTRAINED STRUCTUREPNL

METHODS
t) =f(s(t)) + n(¢ 1
x(®) (s(0) +n(®) @) A. Bayesian BSS methods developed at HUT

wheref is a nonlinear mapping from the source signai® The Bayesian algorithms presented in [3], [4], [5], [6]

the observed signals. The dimensions of the vectorgt) assume a very general model in which the observations are

andx(t) are generally different, and often the dimensionalitgenerated by a nonlinear mappifirom the sources as shown

of s(t) is smaller. The BSS problem is solved by finding & (1). The nonlinear mapping is modeled by a multilayer

compact nonlinear representation of the observation$he perceptron (MLP) network with two layers:

sources are modeled either by the Gaussian or the mixture-

of-Gaussians model and the generative model (1) is learned f(s(t)) = D tanh(Cs(t) + ¢) +d )

according to the variational Bayesian principle. whereC, c andD, d are the weight matrices and biases of
The PNL methods of INPG consider a specific form athe hidden and output layers respectively. Here and in the



following, functionstanh and exp are applied component- The quality of the NFA+FastICA solution can still be
wise to the elements of their vector arguments. improved by using a mixture-of-Gaussians model for the
Implementing the Bayesian approach, all the unknown vaseurces. The resulting model is called nonlinear indepsnde
ables® in the model including the sources, the noise pararfactor analysis (NIFA) [4] being a nonlinear counterpart of
eters and the parameters of the MLP network are assignedependent factor analysis [10]. We shall however use the
hierarchical priors. For example, the noise is assumed to cemputationally more efficient NFA+FastICA approach in the

independent and Gaussian, which yields the likelihood comparison.

The software implementation of the Bayesian BSS algo-

x(t) ~ N(£(s(?)), exp(2va)) rithms and the FastICA algorithm is available at [11] and][12

where N (11, %) denotes a Gaussian density with mgaand respectively.

variances?. All components of the noise parametey share B. PNL ICA methods developed at INPG
a common Gaussian prior: ' ) )
Assuming the PNL structure (2) of the observed signals, the

Vi ~ N (my,, exp(2v,,) ), BSS methods developed at INPG [2], [13] recover independent

.__sources using a separation structure which consists of two
and the hyperparameters,, , v, have very flat Gaussian .
nt Tn subsequent parts:

priors. . . .
The goal of the Bayesian methods is to estimate the poste-l) A non_lmear stag_e, which ShQUId cancel _the nonlinear
rior pdf of all the unknown variable®. In the considered distortions f;. This part consists of nonlinear scalar

functionsz; = g;(z;, 0;).

A linear stage that separates the approximately linear
mixtures z obtained after the nonlinear stage. This is
done as usual by learning anx n demixing matrixB

methods, this is done by variational Bayesian learning [7]
which amounts to fitting a simple, parametric approximation
q(0) to the actual posterior pdf(6|X)*. The misfit between
the approximation and the true posterior is measured by the

Kullback-Leibler divergenceé(¢(0) || p(#|X)) which yields for which the components of the output vecjor= Bz
a cost function of the form of the separating system are statistically independent (or
0 as independent as possible).
C= /q(@) log a(6) de In both stages, the mutual informatiof(y) between the
p(X,0) componentsyy, .. ., y, of the output vector is used as the cost
= D(q(0) || p(6]1X)) —logp(X) = —logp(X). (4 function and the independence criterion.

As follows from (4), the cost function gives a lower bound For the linear part, minimization of the mutual information
for the model evidence(X) which can be used for modell€ads to the same estimation equations as for linear miture
selection [7]. 9I(y)

— T Ty~1
In order for the cost function to be computable in practice, oB I {1/’(3’)2 } - (B ) (®)

the maximally factorial Gaussian approximation is used where components); of the vector ¢(y) are the score

q(0) = Hq(&-) = HN(ai 16,,6;) . functions ofy;:

_d oy Pilw)

The update rules for the posterior meadhsand variances?i

can be derived by differentiating (4), which yields a fixedmere p, (u) is the pdf andp/(u) its derivative. The practical

point iteration forf; and an approximate Newton iteration follearning rule to estimat® is the natural gradient algorithm
0; [3], [4]- The optimal posterior mean®; of the unknown

parameters usually define the solution of the BSS problem. B(t+1) = (I+ H)B(t) (6)
The basic Bayesian algorithm presented in [3] is Ca”e\ﬂith H:I+E{¢(y)yT}

tnhonllnear fa.ctor analysis (NFA). It uses Gaussian prior for The gradient learning rule for the nonlinear stage can be
€ sources. derived from the estimating equations:

s(ﬁ) ~ N 0, exp(2vy
(0, exp(2vs)) af<y>:_E{W}

and therefore does not provide independent source sigrias. 90, 00,

nonlinear ICA problem can then be solved by exploiting the n (7
idea somewhat similar to Gaussianization of factors in PNL _E {Zwi(yi)bik 8gk(35k79k)}
mixtures [8]: The Gaussian factors found by NFA are further = el

rotated by FastICA [9] to obtain independent source signals . i .
We will further refer to this nonlinear ICA method as the\évhere oy, 1 the k-th component of the observation vector,

NFA+FastiCA approach i, IS the elementk of the demixing matrixB, and g, is

the derivative of thek-th nonlinear functiong;. The exact
1Here we denote b — {x(t) | ¢ = 1,...,T} the set ofT" available COMPuUtation algorithm depends on the specific parametric
observations. form of the nonlinear mappingy (zx, 0% ).



The equations (5), (7) for the derivativesidfy) contain the
score functiong); which are not known and must be estimated
(adaptively) from the output vectgr. In the present work, we
used the batch algorithm proposed in [13] with the Gaussian
kernel density estimator for calculating;. We will further
refer to this approach as the PNL ICA algorithm.

The speed of the algorithm can be increased by using a
relevant initialization of the parameters based on the Gaus -
sianization ofz [14]. In the simplest approach, tieth scalar N - ° ' ’

function gy, is initialized by Fig. 1. Experiment A. The distribution of the observationkeThick points
1 represent the noiseless reconstructfgs) of the datax found by the NFA
g =D o Fy, (8) algorithm.

where® is the Gaussian cumulative density function (cdf) and 2
2|

F, is the cdf of thek-th observationzy. i // OWWNWWWWMMWM
The software implementation of the PNL ICA algorithm ic,| / !

available athttp://ww. lis.inpg.fr/denos/sep_ 202 0
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The nonlinear BSS problems are not well known and there” °
are interesting phenomena to uncover even in low-dimeakion a) (0) ©
mixtures. Furthermore, the nonlinear methods are usually. 2. Experiment A. The sources found by the PNL ICA methodl:Ha
computationally quite expensive and often suffer from thie scatter plots; (b) — the estimated time series; (c) — theiliition of the
local minima problem, which usually requires several ruhs §°Urces: Signal-to-noise ratio is 20.78 dB.
an algorithm using different initializations of the estime
parameters. Therefore, we used PNL mixtures of only tw,
independent sources in most of the presented experiments. 1
the experiments with two sources, the sources were a sind he most common assumption of the existing linear ICA
wave and uniformly distributed white noise. methods as well as the considered PNL ICA algorithm is that

Additionally, the two BSS approaches were compared die number of observed mixtures is equal to the number
PNL mixtures of four sub-Gaussian sources which were ur@if hidden sourcesn. Therefore, we started the comparison
formly distributed white noise. experiments by applying the two compared methods to this

The test datax were generated by mixing the simulatedyPe of mixtures.
source signals using a randomly chosen mixing mariand
applying component-wise nonlinear distortiofygo the linear Experiment A. The two independent sources were mixed
mixture as in (2). The data were then centered and normalizéging the following PNL mapping:
to unit variance. In the experiments with noisy mixtureg th h 1.0 04
observation noise with standard deviatiop was added. The X = {tan (y1)] = [ ’ ' } S.

i : tanh(ys) 0.7 1.0
number of samples was 400 in all experiments.

The generated test data were processed by the two altedNate that all the post-nonlinear distortions were invéetib
tive methods. The number of hidden sources was always satl no observation noise was added to the mixtures. The
to the known valuer = 2 or m = 4) for both algorithms.  distribution of the observed signaisis shown in Fig. 1.

In the PNL ICA algorithm, different values of the spread The simulation results presented in Fig. 2 show that the PNL
parameters of the Gaussian kernel density estimator werkCA method of INPG performs perfectly in this problem. The
used. The adaptation steps were= 0.1 for the outputs of the scatter plot (Fig. 2a) shows how well the original sourcesawe
nonlinear stage and = 0.1 for the demixing matrixB (see reconstructed. Each point corresponds to one soyt¢e The
[13] for more details). The results with the maximum signakbscissa of a point is the original source which was used for
to-noise (SNR) ratio of the recovered sources were useckin tfenerating the data and the ordinate is the estimated source
comparison. The optimal result would be a straight line which would mean

The NFA solution was found by trying different modelthat the estimated values of the sources coincide with tree tr
structures, i.e. different number of neurons in the hiddgrel values.
of the MLP (3), and several random initializations of the In contrast, the NFA+FastICA fails to recover the original
parameters;, ; to be optimized. The model with the smallessources in this problem. The noiseless reconstruction f th
value of the cost function (4) was chosen as the NFA solutiotiata shown in Fig. 1 indicates that the best NFA model uses
The sources of the best NFA model were further rotated loply one out of two sources: One of the two sources was set
FastICA as we explained earlier. to zero by the algorithm, which yielded the one-dimensional

PNL mixtures of the same dimensionality



TABLE |

learning rule (6) yields
SIGNAL-TO-NOISE RATIO OF FOUR SUBGAUSSIAN SOURCES RECOVERED

FROMn NOISY PNL MIXTURES. Bt+1)=R(t+1)"Q" =TI+ \H)R(®)'Q",
which shows that only the paR. rotating the projected data
Noise variance PNL ICA NFA+FastICA Q'z is updated.
o n=4 n=38 n=38 Therefore, the initialization ofB is of great importance
0 18.73 19.18 14.53 for the natural gradient algorithm for overdetermined mix-
0.01 1047 15.42 13.27 tures. For example, using the standard initialization &][1
01 1.76 8.05 6.9 B(0) = [I 0] would be equivalent to using only the first
observations.

In the experiments, we used the initialization Bf using
manifold shown by the thick line in Fig. 1. The deviation®"nCiPal component analysis (PCA): The rows Bf were
initialized with the firstm principal vectors found from the

from that line were explained as the observation neiég. ) : o :
This result suggests that the ICA problems with the numbgPrmal'zed (and _opt_|onally GaUSSIan_lzed W'.th (8)) observa
tions. Such initialization worked well in practice.

of mixtures equal to the number of sources is difficult for the . X

) e A possible alternative approach for the case of ICA for
presented NFA+FastICA approach: The variational NFA algo- . . ; .
: : . . .~ overdetermined PNL mixtures could be using the approxi-
rithm usually tends to find a manifold of a lower dlmenS|orr1nation of the entropy of the outputs proposed by Stone
than the dimension of the observation space. This problem by puly prop y

o . . nd Porrill [16]. This would give a gradient based update
could be overcome by requiring the observation noise to . .
- X : rule for B based on the pseudo-inverse Bf with respect
small (e.g. by fixing the noise varianeg to small values) but

. 2 : to the covariance matrix of. However, according to our
this would significantly slow down the learning process. : . . .
. . experiments, the natural gradient algorithm with the PCA
We also applied the PNL ICA algorithm to test problems . .~ . :
. : : . initialization seemed to outperform this approach in theesa
with four noisy PNL mixtures of four sub-Gaussian sources.

The following post-nonlinear distortions were used for gren where the exact number of mixed signals is known a priori
ating the data: Experiment B. The following PNL mixtures of two indepen-
dent sources were used for generating the data:
fi(y) =tanh(y/4)  fo(y) = 0.3y + tanh(y) 9 9

_ : _ tanh(y;) 1.0 04
=10 3 = —0.3y — tanh 9

f3(y) y+y fa(y) y — tanh(y)  (9) x = | tanh(ys) v=lor 10]s.
and the observation noise with different values of the noise tanh(ys3) 1.1 0.6

variances?2 was added. The results of these experiments a® opservation noise was added.

presented in the second column of Table I. They demonstraterhe results provided by the PNL ICA algorithm and the
that the PNL ICA algorithm can be applied to noisy mixturegayesian approach for this mixture are presented in Fig. 3.
as well but its performance naturally deteriorates when thge PNL ICA algorithm works nicely and the quality of the
noise level increases. source restoration is now slightly better than in Experitrien
The NFA+FastICA approach is also able to retrieve the
riginal sources but with a smaller signal-to-noise ratiart
the PNL ICA method. This is a natural result since the NFA
In the following experiments, we consider PNL mixturesigorithm does not take into account the PNL structure of the
with the number of observationsgreater than the number ofdata, and the source estimation by NFA is not based on the
sourcesn. This case is usually referred as the overdetermingehtistical independence of the sources.
BSS (or undercomplete bases) problem and it is particularlyThe results of the experiments with overdetermined PNL
suitable for applying the Bayesian BSS methods. On theixtures @ = 8) of four sub-Gaussian sources are presented
contrary, the standard PNL ICA algorithm requires some the last two columns of Table |. The data were generated
adjustment. using the four post-nonlinear distortions from (9) and othe
The nonlinear stage does not need any changes but tber scalar functions which were same as in (9) but with the
demixing matrixB in the linear stage should now be rectopposite sign. The results show that both methods recovered
angular. However, Zhanet al. showed in [15] that the natural the original sources with SNR depending on the noise level.
algorithm for overdetermined mixtures can be simplifiedi® t The performance of the NFA+FastICA approach is again
standard learning rule (6) which can be used for estimatirg tslightly worse compared with the PNL ICA algorithm.
rectangularB. Note that adding more observations to noisy PNL mixtures
In the linear stage, this approach amounts to projecting timereased the SNR obtained with PNL ICA (compare the
datay onto the subspace defined by the initializatiorBond results forn = 4 andn = 8). The results suggests that using
seeking for independent sources within this subspace.CHmis more observations in noisy mixtures improves the perfocaan
be shown using the QR decompositionBf = QR where of the PNL ICA algorithm while it is not necessarily true for
Q is a rectangular matrix such th@"Q = I. Rewriting the noiseless mixtures.

B. Overdetermined PNL mixtures with invertible postc—)
nonlinear distortions
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Fig. 3. Experiment B. The sources found by the PNL ICA (abov&) a (a) (b) (C)

NLFA+FastICA (below) approaches: (a) — the scatter pldis:(the estimated

time series; (c) — the distribution of the sources. Fig. 5. Experiment C. The sources found by the NLFA+FastICAragach:

(a) — the scatter plots; (b) — the estimated time series; (ce-distribution
of the sources. Signal-to-noise ratio is 13.67 dB.

C. Overdetermined PNL mixtures with non-invertible post-
nonlinear distortions PNL ICA algorithm can recover the original sources (like in

The standard BSS methods for PNL mixtures report&fipeeregtNﬁ)' bl he NFA+FastiCA h clearl
in [13], [2] usually assume the same dimensionality of the n this problem, the ast approach clearly

vectorsx and s and that all post-nonlinear distortions aréJutperforms the PNL ICA method (see the simulation results

modeled by invertible functions. Under such condition® t n Fig. 5) beca_use I doe; not invert the post-nonlinearitiet
entire PNL mapping is invertible and the source separagon parns the entire generatwe model. , .
therefore possible. However, the following experimentveho It is ?"SO possmle t(_) show that the er_ltlre P’.\“‘ mapping
that overdetermined PNL mixtures can be invertible even " be invertible even if several post-nonlinear distostiare
some of the post-nonlinearities are modeled by non-iriverti modeled with non-invertible functions. For example, wedds

functions. The higher dimensionality of the observed nrixsu :hree—dlzﬁr:smNan;IJrI'D:NL“?X(tures W'tr? two %Ta?rat'c d'Stot;
is a necessary but not sufficient condition for that. lons and the as approach was able to recover the

two original sources.

Experiment C. The PNL mapping used for generating the V. CONCLUSIONS

data now contains one non-invertible post-nonlinearity: Based on the experimental results from Section 11, we draw

the following conclusions on the applicability of the PNLAC

2
y? 1.0 0.4 . :
x — | tanh(ys) v= 107 10]s. (10) andbllaayeman NFA+FastICA approaches to post-nonlinear ICA
tanh(ys) 1.1 0.6 probiems.

1) The PNL ICA method definitely performs better in

The two sources were mixed using (10) and no observation classical PNL mixtures with the same number of sources

noise was added to the data. The distribution of the observed
signals is presented in Fig. 4. It indicates that there sxast  2)
bijection from the two-dimensional source space to the data
manifold in the three-dimensional observation space,the.

entire PNL mapping is invertible. 3)
The simulation result in Fig. 4b states that the PNL

ICA method could not cope with the non-invertible post-

nonlinearity. If the non-invertible (first) channel is taketo 4)

consideration, the algorithm cannot provide a good satutio
Note that if only the last two observations are used, the

and observations when all PNL distortions are invertible.
The performance of both methods can be improved by
exploiting more mixtures than the number of sources
especially in the case of noisy mixtures.

The performance of both methods in overdetermined
mixtures largely depends on good initialization of the

model parameters.

The advantage of the Bayesian methods in PNL prob-
lems is that they can separate PNL mixtures with
non-invertible post-nonlinearities provided that the PNL



mapping is globally invertible. The existing PNL ICA [9]
methods cannot do this due to its constrained separation
structure. 10
The variational Bayesian methods are computationaﬁy
more expensive and usually require several runs withtl
different initializations as they often suffer from the

problem of local minima. [12]

More generally, this preliminary study shows the relevance,
of exploiting more observations than sources, especially i
the nonlinear mixtures. In that case, globally invertiblLP
mixtures, but with non-invertible component-wise nonéine
ities, can be identified and sources can be separated, which
is a new and interesting result. Independently, similaultss
were reported by J. Lee in his PhD dissertation [17] whe[%]
he applied successfully a nonlinear mapping (for redudireg t
dimensions) before ICA in such a model (globally but not
locally invertible). [16]

These experimental results can be further investigated, fo
improving understanding of the capabilities and the lititzs  [17]
of the two alternative approaches. In the present work, we
did not try to cover all aspects of the compared methods.
The important questions that can be investigated are how the
algorithms scale to higher-dimensional problems with gdar
number of sources, what is the performance of the methods
for PNL mixtures of both sub-Gaussian and super-Gaussian
sources and others.
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