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Abstract

Boltzmann machines are often used as build-

ing blocks in greedy learning of deep net-

works. However, training even a simplified

model, known as restricted Boltzmann machine

(RBM), can be extremely laborious: Traditional

learning algorithms often converge only with the

right choice of the learning rate scheduling and

the scale of the initial weights. They are also sen-

sitive to specific data representation: An equiva-

lent RBM can be obtained by flipping some bits

and changing the weights and biases accordingly,

but traditional learning rules are not invariant

to such transformations. Without careful tuning

of these training settings, traditional algorithms

can easily get stuck at plateaus or even diverge.

In this work, we present an enhanced gradient

which is derived such that it is invariant to bit-

flipping transformations. We also propose a way

to automatically adjust the learning rate by max-

imizing a local likelihood estimate. Our exper-

iments confirm that the proposed improvements

yield more stable training of RBMs.

1. Introduction

Deep learning has gained its popularity recently as a

way for learning complicated and large probabilistic mod-

els (see, e.g., Bengio, 2009). Especially, deep neu-

ral networks such as a deep belief network and a deep

Boltzmann machine have been applied to various ma-

chine learning tasks with impressive improvements over

conventional approaches (Hinton & Salakhutdinov, 2006;

Salakhutdinov & Hinton, 2009; Salakhutdinov, 2009b).

Deep neural networks are characterized by the large num-
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ber of layers of neurons and by using layer-wise unsu-

pervised pretraining to learn a probabilistic model for the

data. A deep neural network is typically constructed by

stacking multiple restricted Boltzmann machines (RBM)

so that the hidden layer of one RBM becomes the vis-

ible layer of another RBM. Layer-wise pretraining of

RBMs then facilitates finding a more accurate model for

the data. Various papers (Salakhutdinov & Hinton, 2009;

Hinton & Salakhutdinov, 2006; Erhan et al., 2010) empir-

ically confirmed that such multi-stage learning works bet-

ter than conventional learning methods, such as the back-

propagation with random initialization. It is thus important

to have an efficient method for training RBM.

Unfortunately, training RBM is known to be difficult. Re-

cent research suggests that without careful choice of learn-

ing parameters that are well suited to specific data sets and

RBM structures, traditional learning algorithms may fail to

model the data distribution correctly (Schulz et al., 2010;

Fischer & Igel, 2010; Desjardins et al., 2010). This prob-

lem is often manifested in the fact that likelihood decreases

during learning.

In this paper, we discuss the difficulties of training RBMs

using the traditional gradient and propose a new training

algorithm. The proposed improvements include an adap-

tive learning rate and a new enhanced gradient estimate.

The adaptation rule for the learning rate is derived from

maximizing a local approximation of the likelihood. The

enhanced gradient is designed such that it does not con-

tain terms which often distract learning when the traditional

gradient is used. The new gradient is also invariant to the

data representation.

We conduct extensive experiments comparing the conven-

tional learning algorithms with the proposed one. We use

the MNIST handwritten digits data set (LeCun et al., 1998)

and the Caltech 101 Silhouettes data set (Marlin et al.,

2010) as benchmark problems. Some experiments were

performed on the transformed MNIST data set in which

each bit was flipped. We refer to this data set as 1-MNIST.
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The data set 1-MNIST is known to be more difficult to

learn, and we give an explanation for this effect. The em-

pirical results suggest that the new learning rules can avoid

many difficulties in training RBMs.

2. Training Restricted Boltzmann Machines

RBM is a stochastic recurrent neural network consisting of

binary neurons arranged in two layers (Smolensky, 1986).

Each neuron vi in the visible layer is connected to all the

hidden neurons, and each neuron hj in the hidden layer

is connected to all the visible neurons. We denote by v a

binary column vector containing the states vi of the visible
neurons and similarly by h a vector of hidden states hj .

The probability of a particular state (v,h) of the network

is defined by the energy which is postulated to be

E(v,h | θ) = −vT
Wh− b

T
v − c

T
h (1)

where parameters θ include weightsW = [wij ] and biases
b = [bi] and c = [cj ]. Parameter wij is the weight of

the synaptic connections between neurons vi and hj . The

probability of a state (v,h) is

P (v,h | θ) = 1

Z(θ)
exp [−E(v,h | θ)] ,

where Z(θ) is the normalizing constant.

2.1. Training

Maximum likelihood estimation of the parameters of RBM

can be done using gradient-ascent update with learning rate

η and the following gradients:

∇wij = 〈vihj〉d − 〈vihj〉m (2)

∇bi = 〈vi〉d − 〈vi〉m (3)

∇cj = 〈hj〉d − 〈hj〉m . (4)

We denote by 〈·〉d the expectation over the data, or in

other words the distribution P (h | {v(t)},θ). Similarly,

〈·〉m denotes the expectation over the model distribution

P (v,h | θ). We also use a shorthand notation 〈·〉P which

is the expectation over the probability distribution P .

A practical way to avoid computing the gradients exactly,

which is not computationally feasible, is to use Markov-

Chain Monte-Carlo (MCMC) sampling methods to com-

pute the expectations 〈·〉m approximately. The restricted

structure of RBM makes Gibbs sampling efficient in draw-

ing samples from P (v,h | θ): Given one layer, either vis-

ible or hidden, the neurons in the other layer are mutually

independent. This makes it possible to sample from the

whole layer at once.

Training is typically done using only a subset of data exam-

ples for computing the expectations 〈·〉d on each iteration.

This subset of training data is usually called mini-batch.

2.1.1. CONTRASTIVE DIVERGENCE

Contrastive divergence (CD) learning (Hinton, 2002) ap-

proximates the true gradient in (2)–(4) by computing 〈·〉m
using samples obtained after running n steps of Gibbs sam-

pling starting from each data sample of the corresponding

mini-batch. The CD gradient for the weights is approxi-

mated as

∇wij ≈ 〈vihj〉d − 〈vihj〉Pn
(5)

where Pn denotes the distribution after n steps of Gibbs

sampling. Even though CD learning is known to be biased

(Carreira-Perpiñán & Hinton, 2005), it has proven to work

well in practice.

2.1.2. PARALLEL TEMPERING

Parallel tempering (PT) sampling was recently pro-

posed to replace Gibbs sampling for estimating 〈·〉m
(Desjardins et al., 2010; Cho et al., 2010). The basic idea

of PT is that multiple chains of Gibbs sampling are run

for models with different “temperatures”. Every now and

then, the samples are swapped between the chains. Chains

with higher temperatures correspond to more diffuse dis-

tributions and therefore they can produce a greater variety

of samples. This facilitates better exploration of the state

space.

In this paper, we use PT with a set of N inverse tempera-

tures 0 < β2 < · · · < βN−1 < 1. βN = 1 corresponds

to the current RBMmodel with parameters θ = (W,b, c).
Smaller values βi correspond to less restricted models with

parameters θi = (βiW, βib, βic). Thus β1 = 0 corre-

sponds to the most diffuse distribution.

We run separate N chains for each sample in the mini-

batch. After every Gibbs sampling step in the chains, swaps

are proposed and accepted according to theMetropolis rule.

The expectations 〈·〉m are computed from the samples of

the chain with β = 1.

2.2. Annealed Importance Sampling

It is desirable to know the actual value of the likelihood

which is optimized during learning. If the normalizing con-

stant is known, computing the likelihood is straightforward.

Annealed importance sampling (AIS) provides a way to es-

timate the normalizing constant of RBM (Salakhutdinov,

2009a). AIS is based on simple importance sampling (SIS),

which uses the fact that the ratio of two normalizing con-

stants for two probability densities PA(v) = P ∗

A(v)/ZA

and PB(v) = P ∗

B(v)/ZB can be computed as:

ZB

ZA

=

〈

P ∗

B(v)

P ∗

A(v)

〉

PA

. (6)

In SIS, (6) is estimated using samples from PA(v).
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Using this idea, AIS estimates the normalizing constant

of the model distribution by computing the ratio of the

normalizing constants of consecutive intermediate distribu-

tions ranging from so-called base distribution and the target

distribution.

2.3. Difficulties in Training RBMs

The fact that the objective function is very costly to esti-

mate makes training RBM difficult. It is difficult to deter-

mine how well learning is progressing. Furthermore, it is

not possible to use advanced optimization methods such as

conjugate gradient or even line-search.

Learning is performed using stochastic gradient, and it con-

verges to a local solution. It is generally not feasible to

compare different local optima analytically. Schulz et al.

(2010) and Fischer & Igel (2010) recently showed that de-

pending on initialization and learning parameters the re-

sulting RBMs can highly vary even for a small data set.

Furthermore, most learning algorithms discussed in the

previous section can diverge if the learning parame-

ters are not chosen appropriately (Desjardins et al., 2010;

Schulz et al., 2010; Fischer & Igel, 2010). The use of ad-

vanced MCMC sampling methods such as PT has been

shown to avoid divergence but the likelihood can highly

fluctuate in the long run without using the appropriate

learning rate scheduling (Desjardins et al., 2010; 2009).

One way to analyze the quality of a trained model is to

look at the features (the weights wij) and the bias terms

cj corresponding to different hidden neurons hj . Neurons

that have a large bias cj are most of the time active. They

are not very useful because the weights associated to them

can be incorporated into the bias term b. Other neurons

(e.g. with large negative biases cj) can be always inactive

or there can be neurons (with weights wij close to zero)

whose activations are independent of data. Such hidden

neurons are also useless because they do not contribute to

the modeling capacity of RBM.

Ideally, each hidden neuron should represent a distinct

“meaningful” feature, for example, a typical part of an im-

age. We have noticed, however, that very often the hidden

neurons tend to learn features that resemble the visible bias

term b. This effect is more prominent at the initial stage

of learning and for data set in which visible bits are mostly

active, such as 1-MNIST.

Fig. 1(a)-(b) show the weights W of RBM with 36 hid-

den neurons trained using the traditional gradient (2)–(4)

on MNIST and 1-MNIST with the constant learning rate

0.1 and weights initialized randomly from
[

−1 1
]

. The

features learned fromMNIST look quite good, even though

there are some useless neurons. However, the features

learned from 1-MNIST are clearly bad: 18 hidden neurons

(a) (b) (c)

Figure 1. Visualization of filters learned after five epochs by RBM

with 36 hidden neurons. (a) Traditional gradient, MNIST. (b) Tra-

ditional gradient, 1-MNIST. (c) Proposed algorithm (Section 3),

1-MNIST.

are mostly active and represent global features that some-

what resemble the visible bias, the other 18 neurons are

mostly inactive and hence useless.

There is a number of well-known heuristics proposed to

improve the training results. They include proper schedul-

ing of the learning rate, weight decay prior for the weights,

adding momentum terms to the gradients, and forcing spar-

sity of the hidden activations. These heuristics are known

to help in many practical applications, however, with extra

parameters which should be selected very carefully. Good

values of these parameters are typically found by trial and

error and it seems that one requires a lot of experience to

set the learning settings right (Hinton, 2010).

3. Improved Training Algorithm

This section describes the two novel contributions.

3.1. Adaptive Learning Rate

Here we propose an algorithm for automatically adapting

the learning rate while training RBM using stochastic gra-

dient. The automatic adaptation of the learning rate is

based on maximizing the local estimate of the likelihood.

Let θ = (W,b, c) be the current model, θ′ = (W′,b′, c′)
is the updated model with some learning rate η and

Pθ(v) = P ∗

θ
(v)/Zθ is the probability density function

(pdf) with normalizing constant Zθ for the model with pa-

rameters θ. Now if we assume that the learning rate is

small enough and therefore the two models are close to

each other, the likelihood of θ′ can be computed as in SIS

using (6):

Pθ′(vd) =
P ∗

θ′(vd)

Zθ

Zθ

Zθ′

=
P ∗

θ′(vd)

Zθ

〈

P ∗

θ′(v)

P ∗

θ
(v)

〉

−1

Pθ

, (7)

where vd denotes the training data. In practice, we use

samples from the next mini-batch for vd.
1

1Our experiments showed that if the same samples were used
both for obtaining the gradients and the adaptive learning rate, the
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Now we would like to select a learning rate so as to maxi-

mize the likelihood of the new parameters θ′. Equation (7)

can be used to approximate the required likelihood. The

unnormalized pdf P ∗

θ′ is computed using the training sam-

ples and (1), and the expectation 〈·〉Pθ
can be estimated

using the samples from Pθ , like in SIS. These samples are

collected in order to estimate the negative term in (5) and

therefore computing this expectation can be done practi-

cally for free.

In principle, one could find the optimal learning rate that

maximizes the local estimate of the likelihood on each iter-

ation. However, this would likely lead to large fluctuations

of the learning rate because of the small sample size (mini-

batch). In our experiments, we selected the new learning

rate from the set {(1− ǫ)2η0, (1− ǫ)η0, η0, (1+ ǫ)η0, (1+
ǫ)2η0}, where η0 is the previous learning rate and ǫ is a

small constant.

3.2. Enhanced Gradient

In this section, we propose a new gradient to be used in-

stead of (2)–(4). Let us first define the covariance between

two variables under distribution P

covP (vi, hj) = 〈vihj〉P − 〈vi〉P 〈hj〉P .

We can rewrite the standard gradient (2) as

∇wij = covd (vi, hj)− covm (vi, hj)

+ 〈vi〉dm∇cj + 〈hj〉dm∇bi , (8)

where 〈·〉dm = 1
2 〈·〉d + 1

2 〈·〉m is the average activity of a

neuron under the data and model distributions.

The standard gradient (8) has several potential problems.

The gradients w.r.t. the weights are correlated with the gra-

dient w.r.t. the bias terms, assuming that covd (vi, hj) −
covm (vi, hj) is uncorrelated with ∇cj and ∇bi. This ef-

fect is prominent when there are many neurons which are

mainly active, that is for which 〈·〉dm ≈ 1. These terms

can distract learning of meaningful weights, which often

leads to the case when many neurons try to learn features

resembling the bias terms, as shown in Fig. 1(b).

When 〈·〉dm ≈ 0 for most of the neurons, this effect can be

negligible, which might explain why learning 1-MNIST is

more difficult thanMNIST and partially explain why sparse

Boltzmann machines (Lee et al., 2008), which ensure that

the average activation of a hidden neuron is kept at low

level, have been successful.

A related problem is that the update using (8) is different

depending on the data representation. This can be shown

by using transformations where some of the binary units

learning rate fluctuated too much in the case of PT learning and
diverged in the case of CD learning.

of RBM are flipped such that zeros become ones and vice

versa:

ṽi = v1−fi
i (1− vi)

fi , fi ∈ {0, 1} ,
h̃j = h

1−gj
j (1− hj)

gj , gj ∈ {0, 1}.

The parameters can then be transformed accordingly to θ̃

w̃ij = (−1)fi+gjwij

b̃i = (−1)fi
(

bi +
∑

j

gjwij

)

c̃j = (−1)gj
(

cj +
∑

i

fiwij

)

,

such that the resulting RBM has an equivalent energy func-

tion, that is E(x̃ | θ̃) = E(x | θ)+ const for all x. When a

model is transformed, updated, and transformed back, the

resulting model depends on the transformations:

wij ← wij + η
[

covd (vi, hj)− covm (vi, hj)

+
(

〈vi〉dm − fi
)

∇cj +
(

〈hj〉dm − gj
)

∇bi
]

(9)

bi ← bi + η
[

∇bi −
∑

j

gj (∇wij − fi∇cj − gj∇bi)
]

cj ← cj + η
[

∇cj −
∑

i

fi (∇wij − fi∇cj − gj∇bi)
]

,

where ∇θ are the gradients defined in Eqs. (2)–(4).

We have thus 2nv+nh different update rules defined by dif-

ferent combinations of binary fi and gj , i = 1, . . . , nv and

j = 1, . . . , nh, where nv , nh are the number of visible

and hidden neurons, respectively. All the update rules are

well-founded maximum likelihood updates to the original

model. We propose to use as the new gradient a weighted

sum of the 2nv+nh gradients with the following weights:

∏

i

〈vi〉fidm
(

1− 〈vi〉dm
)1−fi

∏

j

〈hj〉gjdm
(

1− 〈hj〉dm
)1−gj

By using these weights we prefer sparse data representa-

tions for which 〈·〉dm ≈ 0 because the corresponding mod-

els get larger weights.

The proposed weighted sum yields the enhanced gradient

∇e wij = covd (vi, hj)− covm (vi, hj)

∇e bi = ∇bi −
∑

j

〈hj〉dm (∇wij −∇bi − 〈vi〉dm∇cj)

∇e cj = ∇cj −
∑

i

〈vi〉dm (∇wij −∇cj − 〈hj〉dm∇bi),

where ∇e wij has the form of (8) with the bias gra-

dient terms cancelled out. In the experiments, we



Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines

0 500 1000 1500

10
2

 

 

L
2
-n
o
rm

Updates

Traditional gradient

Enhanced gradient

Difference

Figure 2. L2-norms of the gradients for weights during the learn-

ing of a RBM with 361 hidden neurons. The blue curve plots the

norms of the traditional gradient, and the green curve plots the

norms of the proposed robust gradient. The norms of the differ-

ence between two gradients are drawn with the red curve.

used simplified equations for the bias gradients ∇e bi =
〈vi〉d − 〈vi〉m −

∑

j 〈hj〉dm∇e wij and ∇e cj = 〈hj〉d −
〈hj〉m−

∑

i 〈vi〉dm∇e wij ,which approximate the proposed

weighted sum. It can be shown that the new rules are in-

variant to the bit-flipping transformations. One can also

note that the enhanced gradient shares all zeroes with the

traditional gradient.

In Figs. 2–3, we present some experimental analysis of the

proposed gradient. Fig. 2 shows the norms of the gradient

for the weights of an RBMwith 361 hidden neurons trained

on the MNIST data set. It is clear that the additional terms

that distract learning dominate in the traditional gradient,

especially at the early stage of training.

Fig. 3 shows the differences in the update directions for dif-

ferent neurons of an RBM trained onMNIST. Each element

of a matrix is the absolute value of the cosine of the angle

between the update directions for the two neurons. The gra-

dients obtained by the traditional rule are highly correlated

to each other, especially, at the early stage of learning. On

the contrary, the new gradient yields update directions that

are close to orthogonal, which allows the neurons to learn

distinct features.

4. Experiments

In this section, we experimentally compare the proposed

improvements to the traditional learning algorithms. In

Sections 4.1–4.3, RBMs are trained on the MNIST data set,

and in Section 4.4, we use the Caltech 101 Silhouettes data.

We run 20 epochs with a mini-batch size of 128 unless oth-

erwise mentioned. Thus, each RBM was updated about

4,700 times. Both biases b and c of an RBM were initial-

ized to all zeros. Weights were randomly initialized such

that wij = λu where λ is a weight scale and u ∼ U(−1, 1)
denotes a sample from the uniform random variable from

−1 to 1. By default, we used λ = 1/
√
nv + nh.

For PT learning, we used 11 different inverse temperatures
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Figure 3. The angles between the update directions for the

weights of RBM with 36 hidden neurons. White pixels corre-

spond to small angles, while black pixels correspond to orthog-

onal directions. From left to right: traditional gradient after 26

updates, traditional gradient after 352 updates, enhanced gradient

after 26 updates, and enhanced gradient after 352 updates.

equally spaced from β1 = 0 to β11 = 1. For CD learning,

we used n = 1 steps of Gibbs sampling. For each set-

ting, RBMs were independently trained with five different

initializations of parameters. After training, the normaliz-

ing constant of each model was estimated using AIS and

the log-probability of the test data was computed. We used

θi = (βiW, βib, βic) and 10,001 equally-spaced temper-

atures. Each estimate of Z(θ) was averaged over 100 inde-
pendent AIS runs.

4.1. Sensitivity to Learning Rate

In order to demonstrate how the learning rate can greatly

affect training results, we trained RBMs with 361 hidden

neurons using the traditional gradient with five learning

rates: η ∈ {1, 0.1, 0.01, 0.001, 0.0001}. The black curves

in Fig. 4 show the log-probability of the test data obtained

with PT and CD sampling strategies. It is clear that the re-

sulting RBMs have huge variance depending on the choice

of the learning rate. Too small learning rates prevent RBMs

from learning barely anything, whereas too large learning

rates often result in models which are worse than those

RBMs trained with proper learning rates. In the case of

η = 10, learning failed completely.

In order to test the proposed adaptive learning rate,

we trained RBMs with 361 hidden neurons using

the traditional gradient and the same five values

{1, 0.1, 0.01, 0.001, 0.0001} to initialize the learning rate.

The blue curves in Fig. 4 show the obtained log-

probabilities of the test data. The results are now more sta-

ble and the variance among the resulting RBMs is smaller

compared to the results obtained with fixed learning rates

(the black curves in the same figure). Regardless of the ini-

tial learning rate, all RBMs were trained quite well. These

results suggest that the adaptive learning rate works well.

However, it was still slightly better to use a constant learn-

ing rate of 0.1.

Fig. 5 shows the evolution of the learning rate during learn-

ing. Even for small initial learning rates, the adaptation

procedure was able to find appropriate learning rate values
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Figure 4. Log-probabilities of test data samples computed after 20

epochs for five runs with different initializations for the learning

rate. Log-probabilities that do not appear on the plot are smaller

than −400. The order of the connected points is arbitrary, they

are sorted in order to make the curves more discriminate.
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Figure 5. Evolution of the adaptive learning rate from five differ-

ent initializations during learning. The learning rates are shown

as a function of the number of updates. RBMs are trained with

the traditional gradient (left) and the robust gradient (right).

after only a few hundred updates. Remarkably, the learn-

ing rates converge to the same value when the enhanced

gradient is used.

The red curves in Fig. 4 show the log-probabilities of the

test data obtained with the new gradient and the adaptive

learning rate initialized with five different values. Both PT

and CD sampling were tried. It is apparent that the en-

hanced gradient improves the overall learning performance

compared to the traditional gradient. Similar performance

was obtained on 1-MNIST (the results are not shown here)

because the new gradient is invariant to data representation.

4.2. RBM as Feature Extractor

In addition to the log-probabilities of the test data, we

trained simple logistic regression classifiers on top of

RBMs to check their feature extracting performance. The

activation probabilities of the hidden neurons were used as

the features. In order not to destroy the learned structure

of the RBM, no discriminative fine-tuning was performed.

This explains why the accuracies reported in this paper are
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Figure 6. Classification accuracy of test data samples computed

after 20 epochs for MNIST (above) and 1-MNIST (below). For

each initial learning rate, the learning was conducted five times.

The results that do not appear on the upper plot were below 88%.

The order of the connected points is arbitrary, they are sorted in

order to make the curves more discriminate.

far from the state-of-the-art accuracy onMNIST using deep

neural networks (Salakhutdinov, 2009b).

The black curves in Fig. 6 show high variance of the clas-

sification results for the traditional gradient depending on

the chosen learning rate. The results obtained for MNIST

(the upper plot) are pretty good although the choice of the

learning rate does have an effect on performance. How-

ever, the classification accuracy obtained for 1-MNIST is

very bad, which proves that 1-MNIST is more difficult for

training using the traditional gradient.

The blue curves in Fig. 6 show that the adaptive learning

rate can reduce the variance of the results obtained with

the traditional gradient. However, the results were quite

significantly worse for the initial learning rate 1. The red

curves in Fig. 6 show the superior performance of the en-

hanced gradient and the adaptive learning rate compared to
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Figure 7. Visualization of filters learned by RBMs with 36 hidden neurons on MNIST with various initial learning rates and initial

weights scaling. Left: using the traditional gradient with fixed learning rate, right: using the enhanced gradient with adaptive learning

rate. Learning was performed for 5 epochs each.

the traditional gradient. Regardless of the initial learning

rate, all RBMs leaned features which yielded high classifi-

cation performance. Note that the results are also excellent

for 1-MNIST.

4.3. Sensitivity to Weight Initialization

In the next experiment, we test the sensitivity of training

results to the scale of the weight initialization. We trained

small RBMs with 36 hidden neurons on MNIST using dif-

ferent scales of the initial weights and varying learning

rates. PT sampling was used to draw model samples from

RBM.

The plot on the left in Fig. 7 visualizes the filters learned

by RBMs using the traditional gradient with fixed learn-

ing rate. It is clear that the results are highly dependent on

the choice of the training parameters: The combination of

the initial weight scale and the learning rate should be se-

lected very carefully in order to learn reasonable features.

The combination of learning rate η = 0.1 and weight scale

λ = 0.1 seems to give the best results for the reported ex-

periments. In practice, an optimal combination of the train-

ing parameters is usually found by trial and error, which

makes training a laborious procedure.

The plot on the right in Fig. 7 shows the filters learned us-

ing the new gradient and the adaptive learning rate initial-

ized with five different values. It is clear that the features

are much better than the ones obtained with the traditional

gradient. Remarkably, no hidden neuron is either dead or

always active regardless of the scale of the initial weights

and the choice of the initial learning rate.

4.4. Caltech 101 Silhouettes

Finally, we tested the proposed learning rules on Caltech

101 Silhouettes data set. RBMs with 500, 1000, and 2000

hidden neurons were trained using the proposed algorithm

for 300 epochs with the mini-batch size set to 256. The

learning rate was initialized to 0.0001.

The obtained results are presented in Table 1. Remarkably,

the classification accuracy improved by more than 5 % over

the best result reported by Marlin et al. (2010).

Table 1. Log-probabilities and classification accuracies of the test

data of Caltech 101 Silhouettes after 300 epochs. First numbers

were obtained by PT learning, and the following numbers were

by CD learning.

Hidden neurons Log-probability Accuracy (%)

500 -127.40, -280.91 71.56, 68.48

1000 -129.69, -190.80 72.61, 70.39

2000 -131.19, -166.72 71.82, 71.39

5. Discussion

The paper discussed the main difficulties of training RBMs

and their underlying reasons. Traditional learning algo-

rithms for RBMs, which are based on approximate stochas-

tic gradient updates, tend to lead to high variance in result-

ing models and possibly diverging behavior. Another prob-

lem is that many learning parameters (e.g., learning rate

scheduling) have to be manually and carefully chosen de-

pending on the structure of the trained RBMs and the prop-

erties of the training data set. Additionally, a problem of

having meaningless hidden neurons in RBMs during learn-
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ing has been demonstrated and discussed.

We proposed a new algorithm for RBM training that ad-

dresses the above difficulties. It consists of an adaptive

learning rate and an enhanced gradient, and it is formu-

lated with well-founded theoretical background. The en-

hanced gradient could overcome the problem of having hid-

den neurons learning the nearly identical features and was

able to speed up the overall learning significantly. Also,

unlike the traditional gradient rules which are dependent

on the data representation, the enhanced gradient was de-

rived to be invariant to it. This allowed to learn the flipped

version of the MNIST data set without any difficulty.

The paper mainly focused on parallel tempering learning,

but we also showed that contrastive divergence learning can

also be enhanced by the proposed improvements. Our fu-

ture work will apply the proposed methods to other models

in the Boltzmann family, such as deep Boltzmann machines

and Gaussian-Bernoulli Boltzmann machines.
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