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Abstract. We propose a few remedies to improve training of Gaussian-Bernoulli

restricted Boltzmann machines (GBRBM), which is known to be difficult. Firstly,

we use a different parameterization of the energy function, which allows for

more intuitive interpretation of the parameters and facilitates learning. Secondly,

we propose parallel tempering learning for GBRBM. Lastly, we use an adaptive

learning rate which is selected automatically in order to stabilize training. Our ex-

tensive experiments show that the proposed improvements indeed remove most of

the difficulties encountered when training GBRBMs using conventional methods.
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1 Introduction

Conventional restricted Boltzmann machines (RBM) [1, 17] define the state of each

neuron to be binary, which seriously limits their application area. One popular approach

to address this problem is to replace the binary visible neurons with the Gaussian ones.

The corresponding model is called Gaussian-Bernoulli RBM (GBRBM) [8]. Unfortu-

nately, training GBRBM is known to be a difficult task (see, e.g. [9, 11, 12]).

In this paper, we propose a few improvements to the conventional training methods

for GBRBMs to overcome the existing difficulties. The improvements include another

parameterization of the energy function, parallel tempering learning, which has previ-

ously been used for ordinary RBMs [6, 5, 3], and the use of an adaptive learning rate,

similarly to [2].

2 Gaussian-Bernoulli RBM

The energy of GBRBM [8] with real-valued visible neurons v and binary hidden neu-

rons h is traditionally defined as
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where bi and cj are biases corresponding to hidden and visible neurons, respectively,

Wij are weights connecting visible and hidden neurons, and σi is the standard deviation

associated with a Gaussian visible neuron vi (see e.g. [11]).

The traditional gradient-based update rules are obtained by taking the partial deriva-

tive of the log-likelihood function log
∑

h
exp(−E(v,h|θ)) , in which the hidden neu-

rons are marginalized out, with respect to each model parameter. However, training

GBRBMs even using well-defined gradients is generally difficult and takes long time

(see, e.g., [11, 12]). One of the main difficulties is learning the variance parameters σi,

which are, unlike other parameters, are constrained to be positive. Therefore, in many

existing works, those parameters are often fixed to unity [9, 11, 15].

3 Improved Learning of Gaussian-Bernoulli RBM

3.1 New Parameterization of the Energy Function

The traditional energy function in (1) yields somewhat unintuitive conditional distribu-

tion in which the noise level defined by σi affects the conditional mean of the visible

neuron. In order to change this, we use a different energy function:

E(v,h|θ) =
nv
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(vi − bi)
2
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Under the modified energy function, the conditional probabilities for each visible

and hidden neurons given the others are

p(vi = v|h) = N
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∑

j

hjWij , σ
2
i



 ,

p(hj = 1|v) = sigmoid
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)

,

where N (· | µ, σ2) denotes the Gaussian probability density function with mean µ and

variance σ2. The update rules for the parameters are, then,
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∇cj = 〈hj〉d − 〈hj〉m , (5)

where a shorthand notations 〈·〉d and 〈·〉m denote the expectation computed over the

data and model distributions accordingly [1].

Additionally, we use a different parameterization of the variance parameters: σ2
i =

ezi . Since we learn log-variances zi = log σ2
i , σi is naturally constrained to stay pos-

itive. Thus, the learning rate can be chosen with less difficulty. Under the modified



Improved Learning of Gaussian-Bernoulli Restricted Boltzmann Machines 3

energy function, the gradient with respect to zi is

∇zi =e−zi
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3.2 Parallel Tempering

Parallel tempering (PT) learning. However, applying the same methodology to GBRBM

is not straightforward: For example, a naive approach of multiplying σi with the tem-

perature results in the base model with zero variances for the visible neurons, or scaling

the energy function by temperature would yield infinite variances. Here, we follow the

methodology of [3].

In order to overcome this problem, we propose a new scheme for constructing the

intermediate models with inverse temperatures β such that

W
(t)
ij = βWij , b

(t)
i = βbi + (1− β)mi,

c
(t)
j = βcj , σ

(β)
i =

√

βσ2
i + (1− β)s2i ,

where Wij , bi and cj are the parameters of the current model, and mi and s2i are the

overall mean and variance of the i-th visible component in the training data.

The intermediate model is thus an interpolation between the base model and the

current model, where the base model consists of independent Gaussian variables fitted

to the training data.

3.3 Adaptive Learning Rate

Many recent papers [2, 16, 7] point out that training RBM is sensitive to the choice of

learning rate η and its scheduling. According to our experience, GBRBM tends to be

even more sensitive to this choice compared to RBM. It will be shown later that, if the

learning rate is not annealed towards zero, GBRBM can easily diverge in the late stage

of learning.

The adaptive learning rate proposed in [2] addresses the problem of automatic

choice of the learning rate. The adaptation scheme proposed there is based on an ap-

proximation of the likelihood that is valid only for small enough learning rates. In this

work, we use the same adaptive learning rate strategy but we introduce an upper-bound

for the learning rate so that the approximation does not become too crude.

4 Experiments

In all the experiments, we used the following settings. The weights were initialized to

uniform random values between ± 1
nv+nh

. Biases bi and cj were initialized to zero and

variances σi to ones. Adaptive learning rate candidates (see [2]) were {0.9η, η, 1.1η},
where η is the previous learning rate. In PT learning, we used 21 equally spaced β ∈
{0, 0.05, . . . , 1}, and in CD learning, we used a single Gibbs step.
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Fig. 1. (a)-(c): The reconstruction errors obtained by training GBRBM using a learning rate fixed

to 0.001 (a), with the adaptive learning rate while updating variances from the 650-th epoch using

CD learning (b) and using PT learning (c). (d): Visualization of the learned variances.

4.1 Learning Faces

The CBCL data [13] used in the experiment contains 2,429 faces and 4,548 non-faces

as training set and 472 faces and 23,573 non-faces as test set. Only the faces from the

training set of the CBCL data were used.

In the first experiment, we trained two GBRBMs with 256 hidden neurons using

both CD and PT learning with the learning rate fixed to 0.001 while updating all pa-

rameters including σ2
i . As can be observed from Fig. 1(a), learning diverged in both

cases (CD and PT learning), which is manifested in the increasing reconstruction error.

This result confirms that GBRBMs are sensitive to the learning rate scheduling. The di-

vergence became significant when the variances decreased significantly (not shown in

Fig. 1(a)), indirectly indicating that the sensitivity is related to learning the variances.

Learning Variances is Important We again trained GBRBMs with 256 hidden neu-

rons by CD and PT learning. The upper-bound and the initial learning rate were set to

0.01 and 0.0001, respectively.
Initially, the variances of the visible neurons were not updated, but fixed to 1. The

training was performed for 650 epochs. Afterwards, the training was continued for 1000

epochs, however, with updating variances.

Fig. 2(a) shows the learned filters and the samples generated from the GBRBM after

the first round of training. The reconstruction error nearly converged (see the blue curve

of Fig. 1(b)), but it is clear to see that both the filters and the samples are very noisy.

However, the continued training significantly reduced the noise from the filters and the

samples, as shown in Fig. 2(b).

From Fig. 1(b), it is clear that learning variances decreased the reconstruction error

significantly. The explanation could be that the GBRBM has learned the importance, or

noisiness, of pixels so that it focuses on the important ones.

The visualization of the learned variances in Fig. 1(d) reveals that important parts

for modeling the face , for example, eyes and mouth, have lower variances while those

of other parts are higher. Clearly, since the important parts are rather well modeled, the

noise levels of corresponding visible neurons are lower.

Parallel Tempering In order to see if the proposed scheme of PT learning works well

with GBRBM, an additional experiment using PT learning was conducted under the

same setting, however, now updating the variances from the beginning.
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(a) (b) (c)

Fig. 2. Example filters (left) and samples (right) generated by GBRBM trained using CD learn-

ing without updating variances (a), continued with updating variances (b), and trained using PT

learning with updating variances from the beginning (c). 12 randomly chosen filters are shown,

and between each consecutive samples 1000 Gibbs sampling steps were performed.

The observation of Fig. 1(c) suggests that learning variances from the beginning

helps. It is notable that the learning did not diverge as the adaptive learning rate could

anneal the learning rate appropriately.

The samples were generated from the trained GBRBM. Comparing the samples in

the right figures of Fig. 2(a)–(c) suggests that the GBRBM trained using PT learning

provides more variety of distinct samples, which indirectly suggests that the better gen-

erative model was learned by PT learning.

4.2 Learning Natural Images

CIFAR-10 data set [11] consists of three-channel (R, G, B) color images of size 32×32
with ten different labels.

Learning Image Patches In this experiment, the procedure proposed in [14] is roughly

followed which was successfully used for classification tasks [11, 12, 4]. The procedure,

first, trains a GBRBM on small image patches.

Two GBRBMs, each with 300 hidden neurons, following the modified energy func-

tion were trained on 8 × 8 images patches using CD and PT learning for 300 and 200

epochs, respectively.

Fig. 3 visualizes the filters learned by the GBRBMs. Apparently, the filters with the

large norms mostly learn the global structure of the patches, whereas those with smaller

norms tend to model more fine details. It is notable that this behavior is more obvious

in the case of PT learning, whereas in the case of CD learning, the filters with the small

norms mostly learned not-so-useful global structures.

The learned variances σ2
i of different pixels i were distributed in [0.0308 0.0373]

and [0.0283 0.0430] in case of CD and PT learning. In both cases, they were smaller

than those of the training samples s2i , lying between 0.0547 and 0.0697. This was ex-
pected and is desirable [11].

Classifying Natural Images The image patches were preprocessed with independent

component analysis (ICA) [10] and were transformed to vectors of 64 independent

components each. Then, they were used as training data for GBRBMs. GBRBMs had

200 or 300 binary hidden neurons, and were trained by persistent CD learning [18] with
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(a) CD learning (b) PT learning

Fig. 3. (a) two figures visualize 128 filters with the largest norms and 128 filters with the smallest

norms of the GBRBM trained using CD learning, and (b) same figures obtained from PT learning.

a fixed learning rate η = 0.005 and variances fixed to one. The minibatch of size 20

was used, and we denote this model ICA+GBRBM.

Afterwards, 49 patches were extracted from each image in a convolutional way,

and the hidden activations were obtained for each patch. Those activations were con-

catenated to form a feature vector which was used for training a logistic regression

classifier.

The best classification accuracy of 63.75%was achieved with ICA+GBRBM having

64 independent components and 300 hidden neurons after training the GBRBM for

only about 35 epochs. The obtained accuracy is comparable to the accuracies from

the previous research. Some of them using the variants of RBM include 63.78% by

GBRBM with whitening [11], and 68.2% obtained by the mean and covariance RBM

with principal component analysis [14].

Also, slightly worse accuracies were achieved when the raw pixels of the image

patches were used. Using the filters obtained in the previous experiment, 55.20% (CD)

and 57.42% (PT) were obtained. This suggests that it is important to preprocess samples

appropriately.

Learning Whole Images Due to the difficulty in training GBRBM, only data sets

with comparably small dimensions have been mainly used in various recent papers. In

case of CIFAR-10 the GBRBM was unable to learn any meaningful filters from whole

images in [11].

In this experiment, a GRBMwith 4000 hidden neurons was trained on whole images

of CIFAR-10. It was expected that learning the variances, which became easier due

to the proposed improvements, would encourage GBRBM to learn interesting interior

features. CD learning with the adaptive learning rate was used. The initial learning

rate and the upper-bound were set to 0.001. The training lasted for 70 epochs, and the

minibatch of size 128 was used.

As shown in Fig. 4(a) the filters with the large norms tend to model the global

features such as the position of the object, whereas the filters with the smaller norms

model fine details, which coincides with the filters of the image patches. It is notable

that the visualized filters do not possess those global, noisy filters (see Fig. 2.1 of [11]).

This visualization shows that the proposed improvements in training GBRBMs pre-

vents the problem raised in [12] that a GBRBM easily fails to model the whole images

by focusing mostly on the boundary pixels only.

Also, according to the evolution of the reconstruction error in Fig. 4(c), the learning

proceeded stably. The red curve in the same plot suggests that the adaptive learning rate

was able to anneal the learning rate automatically.
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Fig. 4. (a): Two figures visualize 16 filters each with the largest norms (left) and the least norms

(right) of the GBRBM trained on the whole images of CIFAR-10. (b): Two figures visualize

original images (left) and their reconstructions (right). (c): The evolution of the reconstruction

error and the learning rate.

Looking at Fig. 4(b), it is clear that the GBRBM was able to capture the essence

of the training samples. The reconstructed images look like the blurred versions of the

original ones while maintaining the overall structures. Apparently, both the boundary

and the interior structure are rather well maintained.

5 Discussion

Based on the widely used GBRBM, we proposed a modified GBRBM which uses a

different parameterization of the energy function. The modification led to the perhaps

more elegant forms for visible and hidden conditional distributions given each other

and gradient update rules.

We, then, applied two recent advances in training an RBM, PT learning and the

adaptive learning rate, to a GBRBM. The new scheme of defining the tempered distri-

butions for applying PT learning to GBRBMwas proposed. The difficulty of preventing

the divergence of learning was shown to be addressed by the adaptive learning rate with

some practical considerations, for example, setting the upper bound of the learning rate.

Finally, the use of GBRBM and the proposed improvements were tested through the

series of experiments on realistic data sets. Those experiments showed that a GBRBM

and the proposed improvements were able to address the practical difficulties such as the

sensitivity to the learning parameters and the inability of learning meaningful features

from high dimensional data.

Despite these successful applications of GBRBM presented in this paper, training

GBRBM is still more challenging than training a RBM. Further research in improving

and easing the training is required.
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