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Abstract. We show that the choice of posterior approximation affects the solution
found in Bayesian variational learning of linear independent component analysis
models. Assuming the sources to be independent a posteriori favours a solution
which has orthogonal mixing vectors. Linear mixing models with either temporally
correlated sources or non-Gaussian source models are considered but the analysis
extends to nonlinear mixtures as well.
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1. Introduction

Recently several methods for variational Bayesian learning of linear
ICA models and their extensions have been reported in the literature
(Attias, 1999; Lappalainen, 1999; Miskin and MacKay, 2000; Choudrey
et al., 2000; Valpola, 2000; Chan et al., 2002; Chan et al., 2003;
Valpola and Karhunen, 2002). The basic idea in these approaches is
to approximate the true posterior probability density of the unknown
variables by a function which has a restricted form. Typically some
type of factorisation is assumed.

In this paper, we study how the choice of the form of posterior ap-
proximation affects the solution which is found by variational Bayesian
learning of linear ICA models. We investigate in detail two common
cases: 1) sources are approximated to be independent a posteriori; and
2) the posterior correlations of the sources are modelled. Note that
although ICA models assume sources to be independent a priori, the
sources still typically have posterior correlations.

We show that neglecting the posterior correlations of the sources
introduces a bias in favour of principal component analysis (PCA)
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solution. By the PCA solution we mean the solution where the mixing
vectors, columns of mixing matrix A, are orthogonal with respect to
the inverse of the estimated noise covariance Σn, that is AT Σ−1

n A is a
diagonal matrix. The preliminary results of this study were reported in
(Ilin and Valpola, 2003).

The rest of the paper is organised as follows. In Section 2, we briefly
introduce variational Bayesian learning. Section 3 discusses the linear
dynamic model whose learning we analyse theoretically in Section 4
and experimentally in Section 5. Section 6 extends the analysis to
non-Gaussian source models and the implications of the analysis are
discussed in Section 7.

2. Variational Bayesian learning

Variational Bayesian learning techniques are based on approximating
the true posterior probability density of the unknown variables of the
model by a function with a restricted form. Currently the most com-
mon technique is ensemble learning where Kullback-Leibler divergence
measures the misfit between the approximation and the true posterior.
It has been applied to ICA and its extensions as well as to several
other types of models (e.g. (Barber and Bishop, 1998; Ghahramani
and Hinton, 2000)).

In ensemble learning, the posterior approximation q(θ) of the un-
known variables θ is required to have a suitably factorial form

q(θ) =
∏

i

q(θi) , (1)

where θi are the subsets of unknown variables. In ICA, at least the
sources S = {s(t)|t} are assumed independent a posteriori of the mixing
matrix A and other parameters:

q(θ) = q(S)q(A)q(θrest) . (2)

Here, θrest are, for instance, variance parameters of the observation
noise and various hyperparameters. Given the observed data X =
{x(t)|t}, the misfit between the true posterior p(θ | X) and its ap-
proximation q(θ) is measured by Kullback-Leibler divergence which
yields a cost function of the form

C = D(q(θ) ‖ p(θ|X)) − log p(X) ≥ − log p(X) .

The extra term − log p(X) is included to the cost function in order to
avoid calculation of the model constant p(X) =

∫
p(X,θ)dθ. Thus, the
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minimised expression can be written in the following form:

C =

〈
log

q(S,A,θrest)

p(X,S,A,θrest)

〉
(3)

= 〈log q(S,A,θrest)〉 − 〈log p(X,S,A,θrest)〉 ,

where 〈·〉 denotes the expectation over distribution q(θ).
The overall probability p(X,S,A,θrest) usually has a simple facto-

rial form, for example

p(X | θ1)p(θ1 | θ2) . . . p(θN−1 | θN )p(θN ) , (4)

and therefore the cost function (4) splits into a sum of simple terms

C =
N∑

i=1

〈log q(θi)〉 −

〈log p(X | θ1)〉 −
N−1∑

i=1

〈log p(θi | θi+1)〉 − 〈log p(θN )〉 . (5)

During learning, the factors q(θi) are typically updated one at a time
while keeping others fixed. For each update of the posterior approxima-
tion q(θi), only the terms with the prior distribution p(θi | θi+1) and
the likelihood p(θi−1 | θi) are relevant. The part of the Kullback-Leibler
divergence to be minimised is then

C(q(θi)) =

〈
log

q(θi)

p(θi−1 | θi)p(θi | θi+1)

〉
. (6)

In ensemble learning, conjugate priors are commonly used because they
make it very easy to solve the variational minimisation problem of
finding the optimal q(θi) which minimises (6).

3. ICA model with temporally correlated sources

Linear source models assume the observations to have been generated
by sources which are mapped linearly to the observations. The model
is

x(t) = As(t) + n(t) , (7)

where n(t) is additive Gaussian noise (sometimes omitted). It is well
known that this model has rotational degeneracy if the sources s(t) have
a static Gaussian model (see, e.g., (Hyvärinen et al., 2001) for intro-
duction). We can choose any invertible C and generate a new solution
A′ = AC and s′(t) = C−1s(t). The sources still remain Gaussian.
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In PCA the degeneracy is removed by requiring the mixing vec-
tors (columns of A) to be orthogonal. In ICA, the degeneracy can be
removed—up to scaling and permutation—by assuming non-Gaussian
sources or, for example, by introducing a diagonal matrix B to model
the dynamics:

s(t) = Bs(t − 1) + m(t) , (8)

where m(t) is Gaussian noise. In the latter case, only second-order
statistics of the observations are needed (Belouchrani et al., 1997; Ziehe
et al., 1998; Tong et al., 1990). The rotation is identifiable if no two
elements of the diagonal of B are equal. A set of equal elements results
in rotational degeneracy among the corresponding set of sources.

In our analysis, we use the linear dynamic model whose learning
is based on second-order statistics. The posterior distribution of the
sources given a fixed mixing matrix is Gaussian which makes the anal-
ysis simple. In Section 6, the analysis is extended to non-Gaussian dis-
tributions. The overall behaviour will be the same in more complicated
cases as well.

4. Effect of posterior approximation: theory

In this section, we analyse theoretically how the choice of the posterior
approximation form for the sources and the mixing matrix affects the
solution which optimises the cost function (4).

First, recall that the idea of the variational approach is to approxi-
mate the very complex posterior p(θ|X) by a simpler and thus tractable
parametrised distribution q(θ).

Due to its simplicity, the posterior approximation cannot repre-
sent all the different solutions of the model. In order to represent all
the degeneracies and permutations, all (nonlinear) correlations of the
variables would need to be modelled but this would not be feasible
computationally. Instead, the approximation captures a neighbourhood
of one particular solution. Each term q(θi) captures the correlations
between the variables in the set θi while all posterior correlations with
the variables in other sets θj are neglected. In ICA this means that the
rotational dependency between the mixing matrix A and the sources S

is neglected. Only the neighbourhood of one particular mixing matrix
is modelled but not the fact that rotating A could be compensated
by rotating S correspondingly. Consequently, the uncertainty in the
mixing matrix and sources is underestimated. This holds true for all
the variational ICA methods cited in this paper.
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4.1. Trade-off between posterior mass and posterior

misfit

The topic of this paper is the effect which the form of q(θ) has on
the solution. Ideally the solution should correspond to a model whose
neighbourhood contains a large portion of the posterior probability
mass. In our case this is fulfilled if 1) the sources and the mixing ma-
trix together explain the observations well and 2) the source dynamics
explains the sources well. In other words, the noise covariances of n(t)
and m(t) should be small. In addition, 3) the solution should be robust.
Requirements 1 and 2 imply a high posterior density and 3 guarantees
that the solution corresponds to a wide peak in the posterior density.
Together these indicate a high probability mass in the neighbourhood
of the solution.

Ensemble learning has gained popularity because it is able to find a
solution which meets these three requirements. However, the restricted
form of the posterior approximation q(θ) results in two additional re-
quirements: 4) the posterior approximation q(S) of the sources and 5)
the posterior approximation q(A) of the mixing matrix should match
the posterior around the solution. In our case the posterior misfit of
the rest of the parameters θrest is not significant in practice but the
choice of the functional form of q(S) in particular and q(A) to a lesser
extent affects the optimal solution.

In general, there is a trade-off between the amount of posterior mass
in the neighbourhood of the solution (requirements 1–3) and the mis-
fit between the approximation and true local probability distribution
(requirements 4 and 5). Usually it is desirable that the requirements
4 and 5 affect the solution as little as possible although sometimes it
is possible to use them to select an appropriate solution among oth-
erwise degenerate solutions (in (Valpola and Karhunen, 2002), source
separation is achieved by means of requirement 4 and a proper choice
of q(S)).

4.2. Factorial q(S) favours orthogonal mixing vectors

Majority of the applications of ensemble learning to ICA models re-
ported in the literature have assumed a fully factorised q(S):

q(S) =
∏

i,t

q(si(t)) . (9)

This results in a computationally efficient learning algorithm but we
will show that it favours orthogonal mixing vectors, a characteristic of
the PCA solution.
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First, we note that with the static ICA model (7) under the re-
striction (2), the optimal q(S) which minimises (4) can be shown (see,
e.g., (Chan et al., 2002)) to factor into

q(S) =
N∏

t=1

q(s(t)) . (10)

Further, the optimal q(s(t)) can be shown (Ghahramani and Beal,
2001) to be Gaussian distributions. Except for the first q(s(1)) and
last q(s(N)), each of them has the same covariance

Σs,opt =
〈
AT Σ−1

n A + Σ−1
m + BT Σ−1

m B
〉−1

, (11)

where Σn and Σm are the noise covariances of n(t) and m(t), re-
spectively.1 Note that the optimal posterior covariance of the sources
does not depend directly on the data. This is a characteristic of linear
Gaussian models.

The misfit between the factorial approximation (9) and the optimal
unrestricted q(S) is minimised when the optimal q(S) agrees with (9).
This is the case when the optimal covariance matrix Σs,opt is diagonal.
This, in turn, happens if and only if the columns of A are orthogonal
w.r.t. the inverse noise covariance Σ−1

n . Since ensemble learning is trying
to minimise the misfit, it favours orthogonal solutions for A.

Figure 1 illustrates the trade-off between the misfit of the posterior
approximation of the sources and the accuracy of the model. Let us
assume that the data were generated by a process which can be ac-
curately modelled by (7) and (8). Further assume that there are two
sources and the mixing vectors, columns of A, are not orthogonal. The
optimal posterior covariance of the sources could then look like the
ones in the upper plot of Figure 1. In the PCA solution, the posterior
covariance would be diagonal and the assumption (9) would be valid.
The cost of inaccurate assumption would increase towards the ICA
solution as shown with dashed line on the second plot of Figure 1.

According to our assumption, the sources can be accurately mod-
elled in the ICA solution. If the source space is rotated by S′ = CS

and this is compensated by

B′ = CBC−1 , (12)

a model with diagonal B may no longer be able to capture resulting
new dynamics B′. In our two-dimensional case b2 = b1 yields a diagonal
B′ = B but b2 6= b1 will in general result in off-diagonal terms in B′.

1 The full form of q(s(t)) for all t is given in Appendix A.2.
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ICA PCA

The form of the true posterior p(s(t) | A, x(t))

ICA PCA

The cost of the posterior and source model misfit

b
2
 = b

1

b
2
 < b

1

b
2
 << b

1

Cost of posterior misfit
Cost of source model misfit

Figure 1. Schematic illustration of the trade-offs between the ICA and PCA solu-
tions. In the PCA solution, the posterior covariance of the sources is diagonal. This
minimises the misfit between the optimal posterior and its approximation. However,
the sources are explained better in the ICA solution.

The further b2 is away from b1, the stronger these off-diagonal terms
are and the worse the diagonal matrix B can model the dynamics. This
is depicted with solid lines in Figure 1.

This analysis suggests that the optimal solution is a result of a trade-
off between the ICA solution where the explanation of the sources is
best and the PCA solution where the posterior approximation of the
sources is most accurate. If the mixing vectors are close to orthogonal
and the source model is strongly in favour of the ICA solution, the
optimal solution can be expected to be close to the ICA solution and
vice versa. If the observation noise is not very high, we can expect that
the explanation of the observations is not compromised. In other words,
linear transformations of A are appropriately compensated by linear
transformations of S.
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4.3. Factorial q(A) favours orthogonal sources

Rewriting (7) in the matrix form

X = AS + noise (13)

shows that the matrices A and S appear symmetrically in the model.
Consequently, the optimal posterior under the assumption q(A) =∏

i q(Ai,:) (where Ai,: are the rows of the mixing matrix) is achieved
by Gaussian densities whose covariance resembles (11):

ΣAi,:,opt =

〈
N∑

t=1

s(t)sT (t)/Σn,i,i + Σ−1
A

〉−1

(14)

where Σ−1
A

is the covariance of the Gaussian prior of Ai,:.
Often the dimension of the data vectors is much smaller than the

number of them. This means that there are far fewer elements in A than
in S and consequently the posterior approximation q(A) does not play a
significant role. However, if the evidence in support of the ICA solution
is weak (b1 ≈ b2) and the posterior of the sources is allowed to have full
covariance, a factorial posterior approximation q(Ai,:) =

∏
j q(Ai,j) can

change the balance in favour of the PCA solution. This is because (14)

has the term
〈∑N

t=1 s(t)sT (t)
〉

which is non-diagonal if the posterior

covariance of the sources is non-diagonal. This in turn is the case when
the columns of the mixing matrix A are non-orthogonal as discussed
earlier.

5. Effect of posterior approximation: experiments

In this section, the trade-off between the ICA and PCA solutions is
studied experimentally. We use the linear dynamic model defined by (7)
and (8). The model and learning rules are summarised in Appendix A.
The data set consists of 10-dimensional observation vectors which were
generated by a linear mapping from two sources. The number of samples
was 1000.

The element of the diagonal of the matrix B corresponding to the
first source was chosen to be b1 = 0.8 while the other element b2 was
varied in the range [−0.8, 0.8]. This controls the strength of evidence
in favour of the ICA solution present in the data.

Figure 2 shows the original sources and their linear mixture in the
subspace defined by the 10 × 2 mixing matrix A. Note that the ICA
directions corresponding to the columns of the mixing matrix are chosen
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Figure 2. The two sources with the linear dynamic model (b1 = 0.8 and b2 = −0.8)
and their noisy mixture plotted in the subspace spanned by the columns of the
mixing matrix. The PCA and ICA directions are also shown on the last plot.

to be non-orthogonal and for clarity they differ very much from the
PCA directions plotted in the same figure.

5.1. Factorial approximation q(s(t))

We first use the generated artificial data to test the learning proce-
dure with the maximally factorial posterior approximation q(S) defined
by (9).

The model was implemented using the building blocks software
(Valpola et al., 2003) based on the learning rules presented in (Valpola
et al., 2001). Then it was learned using 2000 iterations of alternate
updates of the parameters of the approximate posterior q(θ).

Figure 3 shows the results of learning for four different data sets
with b1 = 0.8 and b2 ∈ {0.8, 0.6,−0.2,−0.8}. The solution is presented
by the estimated columns of the mixing matrix projected onto the sub-
space spanned by the true ICA directions. In the experiments, we tried
different initialisations of A including the PCA and ICA solutions but
the simulations converged to the same solutions for all initialisations.
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b2 = 0.8 b2 = 0.6

b2 = −0.2 b2 = −0.8

PCA
ICA

Figure 3. ICA model with temporally correlated sources. The results achieved with
the factorial q(s(t)) for four data sets with b2 ∈ {0.8, 0.6,−0.2,−0.8}. The solution
is presented by the estimated columns of A projected onto the subspace of the true
A. The model was initialised with PCA. The dotted lines represent the solution
after every 100 iterations. The final solution is circled. The intervals between the
ticks on all axes are equal, the scale is arbitrary due to the scaling indeterminacy.

Analysing the results, we see that 1) when the sources have the same
dynamics (b2 = 0.8), the PCA solution is found; 2) when the dynamics
of the sources differs a lot (b2 = −0.8), the solution is very close to the
ICA directions; and 3) when the difference in dynamics is somewhere
in between the two extreme cases (e.g., b2 = 0.6 or b2 = −0.2), the
found solution lies between PCA and ICA: The more different the
source dynamics, the closer the solution is to ICA. The results show
that the quality of the solution found with the maximally factorial
approximation depends very much on the training data and how well
they support the assumed ICA model.

5.2. Unrestricted approximation q(s(t))

We performed the same simulations with the unrestricted q(s(t)) which
yields Gaussian distributions with a full covariance matrix. The rest
of the model parameters θ are modelled with the maximally factorial
approximation as previously. The learning rules for the model are pre-
sented in Appendix A.2 and the sofware implementation is available
on-line (Ilin, 2004).
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b2 = 0.8 b2 = 0.6

b2 = −0.2 b2 = −0.8

PCA
ICA

Figure 4. ICA model with temporally correlated sources. The results achieved with
the unrestricted q(s(t)) for the same data sets as in Figure 3. The current estimates
of the columns of A are plotted after every 100 iterations for b2 = −0.2,−0.8, every
1000 iterations for b2 = 0.6 and every 5000 iterations for b2 = 0.8, the intervals
between the ticks on all axes are equal. The rotation of the solution is much slower
in the case when the souce dynamics is just slightly different (b1 = 0.8, b2 = 0.6).

Figure 4 presents the solutions obtained with the full covariance of
the source posterior. The results clearly show that the performance of
the learning procedure was significantly improved as compared with
the case of factorial approximation: The ICA solution is found except
for the case where b1 = b2. In that case, the model converged to the
PCA solution despite initialisation in the ICA solution.

Note that the similarity of the source dynamics makes the sepa-
ration problem more difficult. If the autocorrelation coefficients are
just slightly different, it is possible to find the ICA directions but the
rotation of the solution is much slower.

If the dynamics of the sources is equal (i.e. b1 = b2), the separation
problem becomes ill-posed: Any direction in the observation space has
similar dynamic properties and none of them is preferred unless some
extra assumptions are made. In the presented experiments, the rotation
in this case is defined by the factorial form of q(A) which yields the
principal component solution as explained in Section 4.3.
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6. Non-Gaussian source models

In Sections 3–5, the rotational invariance was removed by introducing
linear dynamics with diagonal matrix B. A more common way to fix
the rotation is to model the sources by a non-Gaussian distribution. In
this section, we extend the analysis to the case of non-Gaussian source
models. We consider two different non-Gaussian models: a simple model
for super-Gaussian sources and the most commonly used mixture-of-
Gaussians (MoG) model.

6.1. Super-Gaussian source model

If the distribution of the sources is known to be symmetric and super-
Gaussian (which corresponds to positive kurtosis), an easy way to
model the source distribution is using a Gaussian distribution

sj(t) ∼ N
(
sj(t) | 0, σ

2
j (t)

)
(15)

with zero mean and variance σ2
j (t) changing with time (see examples of

sources generated according to this model in Figure 5). We model the
changing variance σ2

j (t) using a variance node, another time-dependent
Gaussian variable uj(t) (Valpola et al., 2004), which yields the density
model presented in Appendix B.1.

For this ICA model, the optimal unrestricted posterior approxima-
tion q(s(t)) can be shown to be Gaussian with the covaraince of a form
similar to (11):

Σs(t),opt =
〈
AT Σ−1

n A + Σm(t)−1
〉−1

where Σm(t) is the time-dependent diagonal covariance of the source

prior. And again, the expectation
〈
s(t)sT (t)

〉
appears in the optimal

covariance for q(Ai,:) just as in (14). Therefore, the same effect of the
posterior approximation is expected for this source model as well.

We studied this model experimentally on 10-dimensional mixtures of
two super-Gaussian sources generated according to the Gaussian model
(15) with the changing variance

σ2
j (t) = e−uj(t) , uj(t) ∼ N(0, (2ν)2) . (16)

The variance parameter ν was varied over the range [0.6, 1] in order
to control the non-Gaussianity of the generated sources and, therefore,
the strength of evidence in support of the ICA solution present in the
data (see Figure 5). The same mixing matrix A as in Section 5 was
used.

effect.tex; 16/03/2005; 17:47; p.12



Effect of Posterior Approximation 13

ν = 0.6 ν = 0.7

−10 −5 0 5 10

−5

0

5

−10 −5 0 5 10

−5

0

5

ν = 0.9 ν = 1

−10 −5 0 5 10

−5

0

5

−10 −5 0 5 10

−5

0

5

PCA
ICA

Figure 5. The noisy linear mixtures of two super-Gaussian sources for different
values of the variance parameter ν. The samples are plotted in the subspace spanned
by the columns of the mixing matrix. The PCA and ICA directions are also shown
on the plots.

The model with the factorial approximation q(s(t)) was implemented
using the building blocks software (Valpola et al., 2003) based on the
learning rules presented in (Valpola et al., 2001). The results of the
simulations for two different initialisations are presented in Figure 6.
The same effect clearly appears in this model as well. An interesting
result of these experiments is the existence of two local minima for
mediate ν: one with nearly orthogonal mixing vectors (and close to
PCA for small values of ν) and the other one close to ICA.

The model with the unrestricted q(s(t)) was implemented using Mat-
lab (Ilin, 2004) based on the learning rules presented in Appendix B.2.
In the experiments with the unrestricted q(s(t)), the correct ICA solu-
tion was found for all the four data sets (the results are not presented
here).

6.2. Mixture-of-Gaussians model for sources

We now study the same effect of the posterior approximation for the
mixture-of-Gaussians source model which is most commonly used in
variational Bayesian ICA (Attias, 1999; Lappalainen, 1999; Miskin and
MacKay, 2000; Choudrey et al., 2000; Valpola, 2000; Chan et al.,
2002).
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ν = 0.6 ν = 0.7

ν = 0.9 ν = 1

PCA
ICA

(a) Initialisation in PCA

ν = 0.6 ν = 0.7

ν = 0.9 ν = 1

PCA
ICA

(b) Initialisation in ICA

Figure 6. ICA with the super-Gaussian source model and the factorial q(s(t)).
The track of the columns of A during learning for four data sets with
ν ∈ {0.6, 0.7, 0.9, 1.0}. The current estimates of the columns of A are plotted after
every 5000 iterations for the PCA initialisation and every 10000 iterations for the
ICA initialisation. The final solution is circled. The intervals between the ticks on
all axes are equal.
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The optimal unrestricted posterior q(s(t)) for this model would be a
mixture of Gaussians, typically with a large number of mixture compo-
nents: Whereas the prior mixture p(s(t)) can be expressed as a product
of simple mixtures p(sj(t)) with Kj components each, modelling pos-
terior correlations means that each and every multivariate Gaussian
has to be modelled separately in the posterior. Therefore, the optimal
source posterior is

qopt(s(t)) =
∑

λ

q(λ(t) = λ)q(s(t) |λ(t) = λ)

=
∑

λ

q(λ(t) = λ)N
(
s(t) |µs(t),λ,Σs,λ

)
(17)

where λ is a vector whose components λj ∈ {1, . . . ,Kj} define the
Gaussians chosen for sources sj. There are

∏
j Kj choices for λ and

therefore the source posterior is a mixture of
∏

j Kj Gaussians. The

sum
∑

λ means
∑K1

λ1=1 · · ·
∑Km

λm=1 and the covariance matrices of the
mixture components are as follows:

Σs,λ =
〈
AT Σ−1

n A + Σm,λ

〉−1
. (18)

Here, Σm,λ is the diagonal covariance of the conditional source prior
p(s(t)|λ(t) = λ). Note that the mixture covariances Σs,λ are same for
all s(t).

As follows from (18), using the factorial approximation q(s(t) |λ(t) =
λ) =

∏
j q(sj(t) |λ(t) = λ) yields the same orthogonalising effect for

the mixing matrix A as in the models already considered in this article.
The approach proposed in (Miskin and MacKay, 2000) uses a simpler

(and therefore coarser) approximation of the cost function (4). The
MoG prior p(sj(t)) for every source sample is approximated by only
one Gaussian whose parameters are calculated using a set of coefficients
λt,j,kj

(see the description of this model in Appendix C). This yields a
Gaussian posterior q(s(t)) whose optimal full covariance is

Σs(t),opt =

〈
AT Σ−1

n A + diag







...
∑Kj

kj=1 λt,j,kj
σ−2

j,kj

...







〉
−1

(19)

where σ2
j,kj

is the variance of the kj mixture component in the prior

for sj. The covariance Σs(t),opt is again similar to (11), and becomes
diagonal if and only if A has orthogonal columns w.r.t. the inverse
noise covariance Σ−1

n . And, of course, the same optimal q(Ai,:) like in
(14) appears in the MoG models as well.
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16 A. Ilin and H. Valpola

In the experiments with the MoG model for the sources, we used 10-
dimensional mixtures of two super-Gaussian sources generated accord-
ing to (15)-(16) with the parameter ν varying over the range [0.6, 1.2].

The simpler models with the Gaussian q(s(t)) and covariance (19)
were implemented in Matlab (Ilin, 2004) according to the learning rules
presented in Appendix C.2. The fully factorial MoG posterior (17) was
implemented using the building blocks presented in (Valpola et al.,
2001) and the MoG block presented in (Harva, 2004). The number of
mixture components for each of the two sources was set to three in all
experiments.

Figure 7 shows the simulation results achieved with the factorial
Gaussian q(s(t)): The same orthogonalising effect is clearly demon-
strated experimentally. Note that these results are very similar to the
ones presented in Section 6.1 for the super-Gaussian source model (see
Figure 6 for comparison). Qualitatively same results were obtained with
the factorial MoG q(s(t)) as well.

The experiments also showed that modelling the posterior correla-
tions in q(s(t)) helps remove the orthogonalising effect: In the case of
the Gaussian q(s(t)) with the full covariance matrix (19), the correct
ICA solution was found for all the four data sets.

7. Discussion

As we have seen, the form of the posterior approximation can strongly
affect the result found by ensemble learning. We based the analysis
on linear models with either temporally correlated or non-Gaussian
sources for the sake of simplicity. The situation is slightly more compli-
cated with nonlinear mixtures because then the optimal posterior form
is not Gaussian and even if it is restricted to be Gaussian, the posterior
covariance of the sources depends on the data and is not the same for
all q(s(t)).

However, the overall results of the analysis apply to nonlinear cases
as well. In nonlinear mixtures, the situation can be approximated by
a time-dependent A(t) if the nonlinear mixture is smooth. Moreover,
nonlinear models which are based on multi-layer linear feed-forward
mappings with element-wise nonlinearities have similar properties as
linear models since the first linear mapping from sources to nonlinear
nodes can compensate linear transformations of the source space.

To conclude, we do not claim that fully factorised posterior approx-
imations are not useful. After all, we have applied them successfully
ourselves. However, one has to be careful. If the mixing matrix cannot
be made more orthogonal e.g. by pre-whitening, it is possible to end
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ν = 0.6 ν = 0.7

ν = 1 ν = 1.2

PCA
ICA

(a) Initialisation in PCA

ν = 0.6 ν = 0.7

ν = 1 ν = 1.2

PCA
ICA

(b) Initialisation in ICA

Figure 7. ICA with the MoG source model and the factorial q(s(t)). The track of
the columns of A during learning for four data sets with ν ∈ {0.6, 0.7, 1.0, 1.2}. The
current estimates of the columns of A are plotted after every 2000 iterations for
the PCA initialisation and every 1000 iterations for the ICA initialisation. The final
solution is circled. The intervals between the ticks on all axes are equal.
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18 A. Ilin and H. Valpola

up close to the PCA solution even though the model should be able to
judge the ICA solution to be better. Improving the posterior approx-
imation will help in those situations but the price to pay is increased
computational cost.
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Appendix

A. ICA with temporally correlated sources

A.1. The density model

The simple ICA model considered in Section 5:

p(X,θ) = p(X|S,A,θrest)p(S|θrest)p(A)p(θrest)

Here, we use the following notation: m is the number of sources; n is
the number of observations; N is the number of samples in the data
set; αj , βj , γ, σ are some constants; diag(v) denotes a diagonal matrix
with the elements of vector v on its main diagonal; and the exponential
function e−v is applied component-wise to the elements of its vector
argument v.

The prior model of the sources and the likelihood:

p(S|θrest) = N (s(1)|0,Σm1
)

N∏

t=2

N (s(t)|Bs(t − 1),Σm)

p(X|S,A,θrest) =
N∏

t=1

N (x(t)|As(t),Σn)

where Σm1
= diag(σ), Σm = diag(e−vs), Σn = diag(e−vx).

The prior for the (hyper)parameters A, θrest:

p(A) =
n∏

i=1

m∏

j=1

N
(
aij |0, α

−1
j

)

p(B) =
m∏

j=1

N
(
bj|0, β

−1
j

)

p(vx|mvx , vvx) =
n∏

i=1

N
(
vx,i|mvx , e−vvx

)

p(vs|mvs , vvs) =
m∏

j=1

N
(
vs,j|mvs , e

−vvs
)

mvx , vvx ,mvs , vvs ∼ N (0, γ)

A.2. The learning rules

The parameters of q(vx), q(vs), q(mvx), q(vvx), q(mvs), q(vvs) and
factorial q(st) are updated using the rules presented in (Valpola et al.,
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2001). The only difference is calculating the variance f̃i of the function
fi = Ai,:s when updating q(vx,i):

f̃i = 〈Ai,:〉Σs 〈Ai,:〉
T +

m∑

j=1

ãij

〈
s2
j

〉

where Σs is the posterior covariance of s.
The following recursive learning rules for st = s(t), A, B are ob-

tained as a result of using conjugate priors.

1. Update rules for unrestricted q(st)

q(st) = N (st|st,Σst)

Σst =
〈
AT Σ−1

n A + Σ−1
m + BT Σ−1

m B
〉−1

st = Σst

〈
AT Σ−1

n xt + Σ−1
m Bst−1 + BT Σ−1

m st+1

〉

with the following exceptions: when t = 1, the term +Σ−1
m + is

replaced by +Σ−1
m1

+ and the term with st−1 is omitted; and when

t = N , the terms BT . . . are omitted.

2. Update rules for q(A)

q(A) =
n∏

i=1

m∏

j=1

N (aij |aij, ãij)

ã−1
ij = 〈αj〉 + 〈evx,i〉

N∑

t=1

〈
s2
t,j

〉

aij = ãij 〈e
vx,i〉

N∑

t=1

[xt,i 〈st,j〉 −
∑

k 6=j

〈aik〉 〈st,kst,j〉]

3. Update rules for q(B)

q(B) =
m∏

j=1

N
(
bj |bj, b̃j

)

b̃−1
j = 〈βj〉 + 〈evs,j 〉

N∑

t=2

〈
s2
t−1,j

〉

bj = b̃j 〈e
vs,j 〉

N∑

t=2

〈st,jst−1,j〉
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B. ICA with super-Gaussian source model

B.1. The density model

The ICA model with super-Gaussian sources (see Section 6.1) has the
same density model as in Appendix A.1 except for the prior for the
sources S:

p(S|θrest) =
N∏

t=1

N (s(t)|0,Σm(t))

where Σm(t) = diag(e−u(t)).
The prior for the hyperparameters corresponding to the source model:

p({u(t)}N
t=1|mu,vu) =

N∏

t=1

N
(
u(t)|mu,diag(e−vu)

)

p(mu|mmu , vmu) =
m∏

j=1

N
(
mu,j|mmu , e−vmu

)

p(vu|mvu , vvu) =
m∏

j=1

N
(
vu,j|mvu , e−vvu

)

mmu , vmu ,mvu , vvu ∼ N (0, γ)

B.2. The learning rules

The parameters of q(mvx), q(vvx), q(ut), q(mu), q(vu), q(mmu), q(vmu),
q(mvu), q(vvu) and factorial q(st) are updated using the rules presented
in (Valpola et al., 2001). The update rules for the parameters vx, A

are the same as in Appendix A. The update rules for unrestricted q(st)
are obtained as a result of using conjugate prior:

q(st) = N (st|st,Σst)

Σst =
〈
AT Σ−1

n A + Σm(t)−1
〉−1

st = Σst

〈
AT Σ−1

n xt

〉
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C. ICA with MoG source model

C.1. The density model

The ICA model with the MoG source prior (see Section 6.2) has the
same density model as in Appendix A.1 except for the prior for the
sources S:

p(S|θrest) =
N∏

t=1

m∏

j=1

Kj∑

k=1

πj,kN
(
st,j|mj,k, e

−vj,k
)

The prior for the hyperparameters corresponding to the source model:

p({πj,k}
Kj

k=1|c) = Dirichlet({πj,k}
Kj

k=1|{cj,k}
Kj

k=1)

p({mj,k}
Kj

k=1|mm,j , vm,j) =

Kj∏

k=1

N
(
mj,k|mm,j , e

−vm,j
)

p({vj,k}
Kj

k=1|mv,j , vv,j) =

Kj∏

k=1

N
(
vj,k|mv,j , e

−vv,j
)

p(mm,j|mmm , vmm) = N
(
mm,j|mmm , e−vmm

)

p(vm,j |mvm , vvm) = N
(
vm,j|mvm , e−vvm

)

p(mv,j |mmv , vmv ) = N
(
mv,j |mmv , e

−vmv
)

p(vv,j |mvv , vvv ) = N
(
vv,j |mvv , e

−vvv
)

j = 1, . . . ,m

mmm , vmm ,mvm , vvm ,mmv , vmv ,mvv , vvv ∼ N (0, γ)

A set of coefficients λt,j,k simplifying the cost function is used like
in (Miskin and MacKay, 2000; Chan et al., 2002):

− log p(st,j |θrest) ≤

Kj∑

k=1

λt,j,k log
πj,kN (st,j|mj,k, e

−vj,k)

λt,j,k

C.2. The learning rules

The update rules for the parameters vx, mvx , vvx , A are the same as
in Appendix A. The parameters of q(mm,j), q(vm,j), q(mv,j), q(vv,j),
q(mmm), q(vmm), q(mvm), q(vvm), q(mmv ), q(vmv ), q(mvv ), q(vvv ) are
updated using the rules presented in (Valpola et al., 2001). The rest
of the update rules are as follows:

effect.tex; 16/03/2005; 17:47; p.23



24 A. Ilin and H. Valpola

1. The update rule for λt,j,k is

λt,j,k ∝ exp{
〈
log πj,k + logN

(
st,j|mj,k, e

−vj,k
)〉
}

with the normalisation conditions
Kj∑

k=1

λt,j,k = 1 .

2. The parameters of q(mj,k), q(vj,k) are updated similarily to the
rules presented in (Valpola et al., 2001) with the exception that
the gradients from the children st,j are weighed by the coefficients
λt,j,k.

3. The update rule for q({πj,k}
Kj

k=1) is obtained as a result of using
conjugate prior:

q({πj,k}
Kj

k=1) = Dirichlet({πj,k}
Kj

k=1|{cj,k +
∑N

t=1
λt,j,k}

Kj

k=1)

4. The update rules for q(st) with full covariance:

q(st) = N (st|st,Σst)

Σst =

〈
AT Σ−1

n A + diag







...
∑Kj

kj=1 λt,j,kj
e
vj,kj

...







〉
−1

st = Σst

〈
AT Σ−1

n xt +




...
∑Kj

kj=1 λt,j,kj
e
vj,kj mj,kj

...




〉

The update rules for q(st) with diagonal covariance:

q(st) =
m∏

j=1

N (st,j|st,j , s̃t,j)

s̃−1
t,j =

Kj∑

k=1

λt,j,k 〈e
vj,k〉 +

n∑

i=1

〈evx,i〉
〈
a2

ij

〉

st,j = s̃t,j




Kj∑

k=1

λt,j,k 〈e
vj,kmj,k〉+

+
n∑

i=1

〈evx,i〉 〈aij〉 [xt,i −
∑

k 6=j

〈aik〉 〈st,k〉]



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