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Abstract

Inferring the goals, preferences and restrictions of strategically behaving agents
is a common goal in many situations, and an important requirement for enabling
computer systems to better model and understand human users. Inverse reinforce-
ment learning (IRL) is one method for performing this kind of inference based
on observations of the agent’s behavior. However, traditional IRL methods are
only applicable when the observations are in the form of state-action paths – an
assumption which does not hold in many real-world modelling settings. This paper
demonstrates that inference is possible even with an arbitrary observation noise
model.

1 Introduction

Inverse reinforcement learning (IRL) [1, 2] is a problem where the reward function parameters of
a Markov decision process (MDP) are inferred based on state-action observations of an optimally
behaving agent.

A limitation with the traditional problem formulation is the assumption that full paths containing both
actions and states have been observed. In many real-world situations such fine-grained observations
may not be available for multiple reasons. For example, it may be costly to set up sensors that could
gather the fine-grained observations, or it may be impossible to change the measurement devices if
they are owned by a third party. Also, even if accurate sensors are used, various environmental factors
may cause unavoidable occlusion, censoring or distortion to the measurements. Initial approaches
have assumed that instead of the actual paths, we might only observe the feature expectations from
the demonstrated paths [3], or alternatively that the state observations are probabilistic [4]. However,
these two existing methods are not applicable when the observation noise model is more general.

This paper formulates the IRL from summary data (IRL-SD) problem, which extends the IRL problem
to situations where the expert demonstrations are not available as complete state-action paths. We
demonstrate that inference is possible with an arbitrary observation noise model, thus significantly
extending the scope of problems where IRL can be performed. We derive the exact likelihood for
this problem and two approximations. We demonstrate that all of these methods are able to solve a
challenging toy problem, but the approximate methods scale significantly better. We demonstrate that
a sensible approximate posterior can be inferred based for a recent RL-based model for the human
oculomotor system based on incomplete observation data.

2 IRL from Summary Data

Let M be a MDP parameterized by θ and assume an agent whose behavior agrees with an optimal
policy for Mθ∗ . Assume that the agent has taken paths (ξ1, . . . , ξN ) but we only have observed
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summaries of these paths: Ξσ = (ξ1σ, . . . , ξNσ), where ξiσ ∼ σ(ξi) and σ(ξi) = P (ξiσ|ξi) is
a stochastic summary function. The inverse reinforcement learning problem from summary data
(IRL-SD) problem is:
Given (1) set of summaries Ξσ from optimal behavior; (2) summary function σ; (3) MDP M with θ
unknown; and optionally (4) prior P (θ).
Determine θ̂ or the posterior P (θ|Ξσ).

3 Inference Methods for IRL-SD

To derive a computable likelihood, we assume both |S| and |A| to be finite and that the maximum
number of actions within an observed episode is Tmax. We denote the finite set of all plausible
trajectories by Ξap ⊆ STmax+1 ×ATmax .

The first alternative is to evaluate the true likelihood for θ given summary observations Ξσ, which
is L(θ|Ξσ) =

∏N
i=1

∑
ξi∈Ξap

P (ξiσ|ξi)P (ξi|θ), where P (ξiσ|ξi) is determined by the summary
function σ, which is assumed to be known.

The second alternative is to use a Monte-Carlo estimate. In this approach, paths ΞMC (set of
size NMC << |Ξap|) are simulated using policy π∗θ , so that each path is drawn with probability
P (ξ|θ). The likelihood of each individual observation can be estimated by a Monte-Carlo sum:

L̂(θ|Ξσ) =
∏N
i=1

1

NMC

∑
ξn∈ΞMC

P (ξiσ|ξn).

The third alternative is to avoid evaluating the likelihood function entirely, and use an approximate
Bayesian computation (ABC) approach [5] instead. ABC also uses Monte-Carlo samples for esti-
mating the likelihood, but does it by comparing the samples directly to the observation data using a
discrepancy function, which is often chosen to be similar to the prediction error function. As this
approach matches the overall behavior of the agent, it can also be seen as “IRL through imitation
learning” [3]. The discrepancy function is denoted by δ(ΞAσ ,Ξ

B
σ )→ [0,∞). Using δ we can define

a stochastic variable dθ ∼ δ(Ξsimσ ,Ξσ), where Ξsimσ = {σ(ΞMC,n)}n=1...|Ξσ|. The ability of θ
to generate data similar to the observation data is quantified by the distribution of dθ. An ABC
approximation for the likelihood is L̃ε(θ|Ξσ) = P (dθ ≤ ε|θ), with an approximation threshold
ε ∈ [0,∞).

Recent work has shown the feasibility of Gaussian process (GP) [6] surrogates for expensive likeli-
hoods [7], also in the ABC setting [8]. We use this approach as well for all of the three methods, as
the likelihoods we work with are expensive to evaluate. The Bayesian optimization (BO) [9] sampling
strategy is used for concentrating the samples so that high likelihood regions are well estimated.

4 Experiments

4.1 Experiment 1: Inference Quality

Our MDP here is a grid world environment. The agent is initially located on a random cell at the
edge of the grid and wants to reach the center, but is blocked by different types of “soft walls”. Our
task is to infer how much each wall type hinders the agent. The summary function is defined as
σ(ξ) = (s0, |ξ|), yielding the initial state at the edge, and the number of steps it took to reach the
goal at center (i.e. we do not know what the intermediate states or actions were).

We measure inference quality both by accuracy of parameter recovery, which quantifies IRL per-
formance, and prediction accuracy, which quantifies imitation learning performance. We observe
that all of the methods are able to solve this problem equally well, and significantly better than a
random baseline (Figures 1a and 1b). The approximate methods are able to perform well on larger
grids where the exact method is computationally infeasible.

4.2 Experiment 2: Modelling Computer Users

We infer the full posterior of a recent RL-based cognitive model using realistic observation data.
The task is to estimate the parameters of a MDP modelling the oculomotor system of a user who is
searching for a specific menu-item from a computer drop-down menu [10, 11]. Although the state
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(a) RMSE to ground truth (mean and standard deviation,
N=30), smaller is better. NxN denotes grid size.

(b) Prediction error on test data (mean and standard
deviation, N=30), smaller is better. NxN denotes grid
size.

transition function is only defined as a computable algorithm, and the summary function σ is a delta
distribution, the ABC method is still applicable.

We infer the posteriors of three parameters of the MDP: (1) duration of eye fixations fdur (units of
100 ms); (2) duration of moving the mouse to select an item dsel (units of 1 s); and (3) probability of
recalling the full menu layout from memory prec. The posterior is visualized in Figure 2 using 2D
slices at the MAP location (dsel = 0.05, prec = 0.80, fdur = 2.6). We observe that a posteriori there
is correlation between fdur and prec, and similarly for fdur and dsel. Both of these are understandable,
as increasing fdur would increase the predicted TCT, as would decreasing prec or increasing dsel.
The posterior of fdur is centered around 260 ms, but there is still uncertainly left in dsel and prec.
The uncertainty in dsel is explained by the difficulty of pointing precisely to the target item with the
cursor, which causes variation in its duration. The uncertainty in prec is explained by the fact that
the menus encountered early on in the experiments were completely new to the subjects, but as the
experiment progressed the subjects were more and more likely to recall the menus. We also observe
that there is no significant posterior correlation between prec and dsel. This indicates that although
they both affect the TCT, the effects they have are orthogonal; increasing the probability of recalling
a menu can not be fully compensated just by increasing the selection duration.

Figure 2: The approximate posterior inferred with ABC demonstrates that the parameters can be
identified and that the remaining uncertainty is well characterized. Left: fixation duration fdur and
menu recall probability prec. Center: fixation duration fdur and selection delay dsel. Right: menu
recall probability prec and selection delay dsel. The color map is chosen so that the maximum of the
posterior is white and minimum is black.

5 Discussion

Overall, regarding partial observability in IRL, there have been two cases for which methods exist:
(1) If the agent has partial observability of the environment state, a POMDP model can be used [12];
(2) If the external observer has partial observability of the environment state, traditional IRL methods
can be extended [4]. This work extends this list by a third item: (3) If the external observer has partial
observability of the complete path, then the presented methods for IRL-SD can be applied.
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