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Problem Setting

We wish to infer the parameters of the task, preferences or limitations
of users when they are performing tasks involving strategic behavior
In inverse reinforcement learning (IRL) context.

A limitation with existing methods for IRL is that they make very
specific assumptions about the type of observation data: trajectories
denoted as ¢ = (sO, a1, s1, ..., aT, sT). We extend this setting to
arbitrary noise models o(¢).

Background: In IRL, a RL model is used to explain the strategic
behavior of a used in a situation similar to a Markov decision process
(S, A, T, R, y). The strategic behavior is assumed to follow an optimal
policy for the MDP. Given observations of the user’s behavior, we wish
to infer the parameters of the MDP, such that the optimal policy
matches the observed behavior.
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Our Contributions

We demonstrate that IRL inference is possible even when the
observation noise model is an arbitrary function o(¢). This extends
the state of the art which is only able to deal with few special types
of observation noise (missing / probabilistic state observations).

We derive the exact Bayesian likelihood for this problem, but
demonstrate that it may be very expensive to evaluate

We propose two approximations: a Monte-Carlo estimate and an
ABC estimate, which are faster to evaluate

Monte-Carlo Likelihood
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IRL-SD Problem

Let M be a MDP (S, A, T, R, ) with parameters . Let
the true parameters be 6* € © and assume agent behav-
ing according to an optimal policy for Mpy+. Assume the
agent has taken paths (&1,...,&x) and we observe sum-
maries Z, = (&10,...,EN0), Where &, ~ o0(&;) and o
1s a known summary function. The inverse reinforcement
learning problem from summary data (IRL-SD) 1s then:

Given (1) set of summaries =, of an agent demonstrating
optimal behavior; (2) summary function o; (3) MDP M
with 6 unknown; (4) bounded space ©; and optionally (5)
prior P(6).

Estimate 0 € © such that simulated behavior from M,
agrees with =, or the posterior P(0|=, ).

ABC Likelihood

Assume a function for generating summary datasets =5
given MDP M, parameters ¢, number of episodes IV, and
summary function o: RLSUM(My, N, o). Also assume a
discrepancy function 0,

5(Z4,28) - [0, 00),

o' —ag

which quantifies the dissimilarity between two observation
datasets.

By combining RLSUM(Mjy, |Z,|, o) with §, we define
dg ~ S(RLSUM(Mp, |, |, 0), Z.,).

The distribution of dy corresponds with the ability of 6 to
satisfy our requirements for solving the IRL-SD problem.
Finally we define an approximate likelihood function,

L.(02,) = P(dy < £|6),
where the approximation threshold € € [0, 0o).
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Experiments (Grid World)

Algorithm runtime (one step)
with different grid sizes
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Inferred likelihood densities (example)
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Inference quality (error to ground truth,
prediction error) with different grid sizes and
dimensionality of reward function

Error to ground truth (2 features)
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Inference

GP surrogate fit using Bayesian optimization

Algorithm 1 Likelihood Estimation for IRL-SD
Input: M, =,, O, H, N,y
Output: Likelihood estimate L(6)
D+ @
for: =1to N,,; do
0, < argmaxgy Acq(6|D, H)
Ty < RL(M,)
if Exact then
dﬁl — log L(9-5_|EJ)
else
=yvc < {SIM(Me, , 75 ) tn=1..Nyc
if Monte-Carlo then
dg < log L(6;|Z,)
else if ABC then

=5« {0(Emen) fn=1..Nuc
d,g — 5("533?1?30)
end if
end if
D «—{D,(6;,dg)}
end for
if ABC then
e < ming G,(0|D, H)
E(Q) — ¢(£|GM(9|D, H),
else
log L(0) < G(0|D,H)
end if

Gs(0|D, H))

Full Posterior Inference

Model: Visual search in drop-down menus
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Summary

Regarding partial observability in IRL, there now exists
formulations for three different situations:

(1) Agent has partial observability of the environment
state — POMDP model

(2) External observer has partial observability on state
level — traditional IRL methods can be extended

New: (3) External observer has partial observability on
path level — presented methods for IRL-SD can be used
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