
We introduce an Engine for Likelihood-Free 
Inference (ELFI), a software package for 
approximate Bayesian inference [1] that can be 
used when the likelihood function is difficult to 
evaluate or unknown, but a generative simulator 
model exists.

The software is in Python, and its modular library 
design emphasizes both ease-of-use and 
expandability, allowing arbitrary user-defined 
simulators and implementation of new inference 
methods with minimal effort.

Probabilistic inference models can be represented 
intuitively as graphs, and users can execute the 
inference in a computational environment best 
suited for their needs, from single laptops to cluster 
computers.

The whole inference pipeline is automatically 
parallelized, and intermediate results may be stored 
to disk for later use.

The package includes implementations of some of 
the most advanced likelihood-free inference 
techniques.

One example of these is BOLFI [2], which 
estimates the discrepancy function using Gaussian 
process regression and uses Bayesian optimization 
for parameter search, which has recently been 
shown to accelerate likelihood-free inference up to 
several orders of magnitude.
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Inference Tasks
ELFI allows the researcher to define the inference task as a 
graphical model. Nodes in the graphical model can be eg. 
Scipy distributions or user-defined functions.

User-defined generative model for simulated data (MA2) 

Example of a graphical model with two summary statistics
(S1 and S2) and a discrepancy node (d)

Main Features
Ease of use
The library has intuitive user-interface, allowing the 
researcher to get feasibility studies done quickly. 
Interfacing eg. C++ simulators is also rather simple.

Inference tasks defined with graphical models
Suitable for various different inference tasks that 
can be defined as a DAG.

Native support for parallelization
The inference engine is built on top of Dask, a 
Python library for parallelizing computation. This 
enables the researcher to easily port the model to 
eg. a cluster computer without changes to the code.

Implemented inference methods
The library has ready-made implementations of 
standard ABC inference methods, such as rejection 
sampling and SMC-ABC, as well as some novel 
methods, such as BOLFI.

Storing inference results to disc
The library has support for storing e.g. simulated 
data and inference results to disc for later use.

Open source
The library is published under the BSD3 license, 
and credit will be given to authors contributing to 
the library. Authors can get visibility to their work by 
publishing them as a part of a larger open-source 
package.

An open-source Python library for likelihood-free inference.

Easy to use, fast to do feasibility studies.

Multiple inference methods already implemented.

Can be interfaced with external simulators (e.g. C++).

Samples and inference results can be easily stored to disc.

Native parallelization, easy to up-scale inference tasks from 
desktop to cluster environments.

Take-home Messages

User Interface

ELFI: Engine for
Likelihood-Free Inference

Example of the user interface of the library:

import elfi

from elfi.ma2 import acov1, acov2, L2dist

# User-defined simulator

def MA2(t1, t2, n_sim=1, prng=None):

    n_obs = 100

    w = prng.randn(n_sim, n_obs+2)

    y = w[:,2:] + t1 * w[:,1:-1] + t2 * w[:,:-2]

    return y

# Observed data

y_obs = MA2(0.6, 0.2)

# Model definition

t1 = elfi.Prior('t1', 'uniform', -1, 2)

t2 = elfi.Prior('t2', 'uniform', -1, 2)

Y = elfi.Simulator('MA2', MA2,

                   t1, t2, observed=y_obs)

S1 = elfi.Summary('S1', acov1, Y)

S2 = elfi.Summary('S2', acov2, Y)

d = elfi.Discrepancy('d', L2dist, S1, S2)

# ABC posteriors

# BOLFI illustrations

# Inference with Rejection ABC

N = 1000

rej = elfi.Rejection(d, [t1, t2], batch_size=N)

results = rej.sample(N, quantile=0.001)

# Change to log of distance

logL2 = lambda s1,s2: np.log(L2dist(s1,s2))

d = d.change_to(

    elfi.Discrepancy('log_d', logL2, S1, S2) )

# Inference with BOLFI [2]

gp_model = elfi.GPyModel(bounds=((-2,2), (-1,1))

bolfi = elfi.BOLFI(d, [t1, t2], batch_size=5,
                   n_surrogate_samples=150,
                   model=gp_model)

posterior = bolfi.infer()

The calculations required for 
performing the inference task are 
automatically transformed into a 
sequence of operations, part of 
which can be computed in parallel.

One such sequence of operations is 
visualized on the right. It visualizes 
the operations for computing 
distances from the example model.

We use the Dask library for 
scheduling the operations. The 
library works on desktop 
computers, but can be as well used 
in cluster environments, such as 
SLURM.

Parallelization              

Web page: http://elfi.readthedocs.io
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