
We introduce an Engine for Likelihood-Free
Inference (ELFI), a software package for
approximate Bayesian inference [1] that can be
used when the likelihood function is difficult to
evaluate or unknown, but a generative simulator
model exists.

The software is in Python, and its modular library
design emphasizes both ease-of-use and
expandability, allowing arbitrary user-defined
simulators and implementation of new inference
methods with minimal effort.

Probabilistic inference models can be represented
intuitively as graphs, and users can execute the
inference in a computational environment best
suited for their needs, from single laptops to cluster
computers.

The whole inference pipeline is automatically
parallelized, and intermediate results may be stored
to disk for later use.

The package includes implementations of some of
the most advanced likelihood-free inference
techniques.

One example of these is BOLFI [2], which
estimates the discrepancy function using Gaussian
process regression and uses Bayesian optimization
for parameter search, which has recently been
shown to accelerate likelihood-free inference up to
several orders of magnitude.

Abstract

Antti Kangasrääsiö,
Jarno Lintusaari,

Kusti Skytén,
Marko Järvenpää,
Henri Vuollekoski
Michael Gutmann,

Aki Vehtari,
Jukka Corander,

Samuel Kaski

Inference Tasks
ELFI allows the researcher to define the inference task as a
graphical model. Nodes in the graphical model can be eg.
Scipy distributions or user-defined functions.

User-defined generative model for simulated data (MA2)

Example of a graphical model with two summary statistics
(S1 and S2) and a discrepancy node (d)

Main Features
Ease of use
The library has intuitive user-interface, allowing the
researcher to get feasibility studies done quickly.
Interfacing eg. C++ simulators is also rather simple.

Inference tasks defined with graphical models
Suitable for various different inference tasks that
can be defined as a DAG.

Native support for parallelization
The inference engine is built on top of Dask, a
Python library for parallelizing computation. This
enables the researcher to easily port the model to
eg. a cluster computer without changes to the code.

Implemented inference methods
The library has ready-made implementations of
standard ABC inference methods, such as rejection
sampling and SMC-ABC, as well as some novel
methods, such as BOLFI.

Storing inference results to disc
The library has support for storing e.g. simulated
data and inference results to disc for later use.

Open source
The library is published under the BSD3 license,
and credit will be given to authors contributing to
the library. Authors can get visibility to their work by
publishing them as a part of a larger open-source
package.

An open-source Python library for likelihood-free inference.

Easy to use, fast to do feasibility studies.

Multiple inference methods already implemented.

Can be interfaced with external simulators (e.g. C++).

Samples and inference results can be easily stored to disc.

Native parallelization, easy to up-scale inference tasks from
desktop to cluster environments.

Take-home Messages

User Interface

ELFI: Engine for
Likelihood-Free Inference

Example of the user interface of the library:

import elfi

from elfi.ma2 import acov1, acov2, L2dist

User-defined simulator

def MA2(t1, t2, n_sim=1, prng=None):

 n_obs = 100

 w = prng.randn(n_sim, n_obs+2)

 y = w[:,2:] + t1 * w[:,1:-1] + t2 * w[:,:-2]

 return y

Observed data

y_obs = MA2(0.6, 0.2)

Model definition

t1 = elfi.Prior('t1', 'uniform', -1, 2)

t2 = elfi.Prior('t2', 'uniform', -1, 2)

Y = elfi.Simulator('MA2', MA2,

 t1, t2, observed=y_obs)

S1 = elfi.Summary('S1', acov1, Y)

S2 = elfi.Summary('S2', acov2, Y)

d = elfi.Discrepancy('d', L2dist, S1, S2)

ABC posteriors

BOLFI illustrations

Inference with Rejection ABC

N = 1000

rej = elfi.Rejection(d, [t1, t2], batch_size=N)

results = rej.sample(N, quantile=0.001)

Change to log of distance

logL2 = lambda s1,s2: np.log(L2dist(s1,s2))

d = d.change_to(

 elfi.Discrepancy('log_d', logL2, S1, S2))

Inference with BOLFI [2]

gp_model = elfi.GPyModel(bounds=((-2,2), (-1,1))

bolfi = elfi.BOLFI(d, [t1, t2], batch_size=5,
 n_surrogate_samples=150,
 model=gp_model)

posterior = bolfi.infer()

The calculations required for
performing the inference task are
automatically transformed into a
sequence of operations, part of
which can be computed in parallel.

One such sequence of operations is
visualized on the right. It visualizes
the operations for computing
distances from the example model.

We use the Dask library for
scheduling the operations. The
library works on desktop
computers, but can be as well used
in cluster environments, such as
SLURM.

Parallelization

Web page: http://elfi.readthedocs.io

[1] Lintusaari et al. Fundamentals and Recent Developments in Approximate Bayesian Computation. Systematic Biology 2016.
[2] Gutmann & Corander. Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models. JMLR 2016.

http://elfi.readthedocs.io/

