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Abstract— While variational Bayesian (VB) inference is typ-
ically done with the so called VB EM algorithm, there are
models where it cannot be applied because either the E-step or
the M-step cannot be solved analytically. In 2007, Honkela et
al. introduced a recipe for a gradient-based algorithm for VB
inference that does not have such a restriction. In this paper,
we derive the algorithm in the case of the mixture of Gaussians
model. For the first time, the algorithm is experimentally
compared to VB EM and its variant with both artificial and
real data. We conclude that the algorithms are approximately
as fast depending on the problem.

I. INTRODUCTION

Variational Bayesian (VB) inference (see e.g. [3]) is a
tool for machine learning of probabilistic models that is
more accurate than traditional point estimates (least squares,
maximum likelihood, maximum a posteriori) but still very
fast compared to sampling (MCMC) methods. VB is espe-
cially useful with latent variable models where the number of
unknown variables is often very large which makes point esti-
mates overfit on one hand, and sampling methods very slow
on the other. VB takes into account the uncertainty of the
unknown variables by estimating a probability distribution q
for them. In this paper, we use a parameterized distribution
q.

The standard way to do VB inference is the VB
expectation-maximization (EM) algorithm. While the VB
EM algorithm provides a straightforward way of learning
models in the conjugate-exponential family, there are more
complicated models for which the VB EM algorithm is not
available such as the nonlinear state-space model (NSSM) of
[14]. In such cases, it is still possible to compute (or at least
approximate) the VB cost as a function of the variational
parameters ξ and minimize using a suitable optimization
method. Recently in [6], such a method was tailored for VB,
but it has not been compared to the VB EM algorithm. This
paper does the comparison using the mixture of Gaussians
(MoG) problem which is known to be well-fitted for the VB
EM algorithm.

We show in this paper that a gradient-based algorithm can
be made competitive with the VB EM algorithm in compu-
tation time. Each update is more costly, but the number of
required iterations before convergence is lower. Having more
than one algorithm for the same problem can be useful in
many ways. Different algorithms end up in different locally
optimal solutions. Some algorithms are easier to parallelize
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and become more efficient with massively parallel hardware.
Also, some algorithms are easier to be implemented locally,
that is, they could be implemented as neural systems. Also,
gradient-based algorithms can trivially be used for online
learning.

The rest of the paper is as follows. Section II gives
an introduction to VB and the VB EM algorithm. Section
III describes gradient-based algorithms for VB. Section IV
describes the variational mixture of Gaussians model and
how the different algorithms are implemented for it. Section
V gives experimental results with both artificial data and
natural images, after which we conclude.

II. VARIATIONAL BAYESIAN INFERENCE

Many machine learning problems can be seen as inferring
the parameters θ and the latent variables Z of some model
given the observed data X, where the latent variables are
quantities related to each data sample that cannot be observed
directly. Thus, the number of latent variables is proportional
to the number of observations, while the parameters θ are
shared between all data samples. The Bayes’ rule can be used
for this inference task in the form

p(θ,Z|X) =
p(X|θ,Z)p(θ,Z)

p(X)
(1)

which gives us the posterior probability distribution of un-
knowns θ and Z.

The prior p(θ,Z) in Equation (1) can be interpreted as
our knowledge of the model parameters before the data
X is observed while the posterior p(θ,Z|X) gives us the
parameter distribution after the data is observed. Thus, the
observation of the data can be seen as changing our prior
beliefs about the parameters.

The evidence p(X) in (1) can be evaluated to be

p(X) =
∫

θ,Z

p(X,θ,Z)dθdZ. (2)

The central issue in Bayesian inference is that, apart from the
simplest models, this integral is intractable. Also, for exam-
ple the evaluation of the predictive distribution p(y|X), that
is the distribution of a new observation y given the observed
data X, becomes intractable as it requires integration over
the posterior distribution.

Variational methods attempt to overcome intractable in-
tegrals such as (2) by approximating the true posterior
distribution p(θ,Z|X) by another distribution q(θ,Z). We
use the Kullback–Leibler divergence to measure the misfit



between these distributions, defined as

DKL(q||p) =
∫

θ,Z

q(θ,Z) ln
q(θ,Z)
p(θ,Z|X)

dθdZ

= Eq

{
ln

q(θ,Z)
p(θ,Z|X)

}
(3)

where Eq {·} denotes the expectation over distribution q.
As the true posterior p(θ,Z|X) in (3) is unknown, we will

subtract the log-evidence, which is a constant, from this to
obtain the true cost function C used in the learning process:

C = DKL(q||p)− ln p(X) = Eq

{
ln

q(θ,Z)
p(θ,Z,X)

}
. (4)

Because the Kullback–Leibler divergence is non-negative, the
negative cost function −C is a lower bound on the log model
evidence ln p(X).

To make the integral in (4) tractable one has to somehow
restrict the form of the distribution q(θ,Z). One way to
accomplish this is to select the functional form of the
distribution q(θ,Z) governed by some parameters ξ which
we will denote by q(θ,Z|ξ). A popular choice for this fixed
form solution is a factorized Gaussian distribution.

VB learning has recently become popular in inference
tasks due to its capability to automatically select the com-
plexity of the model and mostly avoid overfitting the data
while still being computationally efficient enough to be able
to solve real world problems.

A. The VB EM Algorithm

Let us assume that the approximate posterior q(θ,Z) will
factorize between the parameters θ and the latent variables
Z, that is

q(θ,Z) = q(θ)q(Z). (5)

The VB EM algorithm alternates between two update steps,
the E-step finds the optimal q(Z) assuming that q(θ) is fixed,
and the M-step finds the optimal q(θ) assuming that q(Z) is
fixed. It is shown for example in [3] that the solutions are

q(Z) ∝ exp(Eq(θ) {ln p(θ,Z,X)}) (6)
q(θ) ∝ exp(Eq(Z) {ln p(θ,Z,X)}). (7)

These steps are repeated until convergence is achieved, which
is determined by evaluating the cost function (4) on each
iteration.

It was proposed in [7] that cyclic parameter update algo-
rithms such as VB EM could be accelerated using a technique
called pattern searches. The idea is that after every few cyclic
updates, a line search is performed in the direction defined
by the difference of the current estimate of the unknowns
and the old estimate one update cycle before that.

III. GRADIENT-BASED LEARNING ALGORITHMS

The VB cost function C = C(ξ) in (4) is a function
of the variational parameters ξ that define the distribution
q once the functional form of q is fixed. As a results,
VB inference can also be done using standard nonlinear
optimization techniques to find the minimum of C.
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Fig. 1. Gradient and conjugate gradient updates are applied to finding the
maximum of the posterior p(x, y) ∝ exp[−9(xy−1)2−x2−y2]. The step
sizes that maximize p are used. Note that the first steps are the same, but
the following gradient updates are orthogonal whereas conjugate gradient
finds a much better direction.

A. Gradient Descent

The simplest nonlinear optimization technique is the gra-
dient descent. In that method, one first evaluates the negative
gradient of the cost function pk = −∇C(ξk), then performs
a line search in the direction of pk to obtain a step size
λ and finally updates the parameters using this step size
ξk+1 = ξk +λpk. Instead of line search, the step size λ can
also be set to some sufficiently small constant or adjusted
adaptively.

B. Conjugate Gradient Descent

There are many speed-ups to the basic gradient descent al-
gorithm one of which is the conjugate gradient (CG) method.
Figure 1 shows a comparison of gradient and conjugate
gradient updates in a simple problem.

In the CG method, the search direction is set to the
negative of the gradient on the first iteration just like in
gradient descent but on subsequent iterations, the search
direction is

pk = −gk + βkpk−1 (8)

where gk = ∇C(ξk), pk−1 is the previous search direction
and βk can be calculated using the Polak-Ribiére formula
[10]

βk =
〈(gk − gk−1),gk〉
‖gk−1‖2

=
(gk − gk−1)Tgk

gTk−1gk−1

. (9)

The convergence of the algorithm can only be guaranteed
if βk is restricted to be non-negative [13]. In practice, we
reset the search direction pk to the negative gradient each
time the Polak-Ribiére formula returns a negative βk.

C. Natural Gradient Descent

Natural gradient descent [2] is based on differential geom-
etry where the geometry of the parameter space is not Eu-
clidean. Changing the parameters by a certain amount might
have a relatively small or large effect on the distribution
that the parameters define, and the natural gradient can take
this difference into account. Figure 2 shows a comparison of
gradient and natural gradient directions in a simple problem.
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Fig. 2. Gradient and natural gradient directions are shown for the mean
of distribution q. VB learning with a diagonal covariance is applied to the
posterior p(x, y) ∝ exp[−9(xy − 1)2 − x2 − y2]. The natural gradient
strengthens the updates in the directions where the uncertainty is large.

In a Riemannian manifold S, the inner product is given
by

〈v,u〉p = vTGu (10)

where G = (gij) is called the Riemannian metric tensor of
the manifold S at point p [9]. As a consequence of (10), the
squared norm of vector v in a Riemannian manifold is

‖v‖2 = 〈v,v〉p = vTGv (11)

which is analogous with the squared norm in Euclidean space

‖v‖2 = 〈v,v〉 = vTv. (12)

Using information geometry, the parameter space ξ of prob-
ability distributions q(θ,Z|ξ) can be regarded as a Rieman-
nian manifold whose Riemannian metric tensor G is given
by the Fisher information matrix [1], [9]

gij(ξ) = Eq

{
∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)
∂ξj

}
. (13)

If the geometry of the parameter space of C(ξ) is con-
sidered Riemannian, the direction of the steepest ascent is
given, instead of the gradient, by the natural gradient [2]

∇̃C(ξ) = G−1(ξ)∇C(ξ). (14)

Thus, the gradient descent method of section III-A becomes

ξk+1 = ξk − λ∇̃C(ξk). (15)

This is called the natural gradient descent algorithm.
Original applications [2] of the natural gradient were based

on the geometry of p(X|θ) to update the point estimates of
the model parameters θ. For applications to learning MLP
networks, it was proposed [5] that the dependencies between
weights in different layers would be ignored, making the
approximate matrix G block diagonal and hence easier to
invert, since only the separate blocks need to be inverted.

Our approach, proposed in [6], is that natural gradient
could be applied to update both the model parameters and

the latent variables by using the geometry of the variational
Bayesian approximation q(θ,Z|ξ). The matrix inversion
required for the evaluation of the natural gradient in (14)
would be prohibitively expensive if the full matrix had
to be inverted. Luckily, because of the typical factorizing
approximation of q, the matrix G is block diagonal [6]
without further approximations.

D. Natural Conjugate Gradient Descent

The natural and conjugate gradient methods can be com-
bined by using conjugate directions as described in Section
III-B by replacing the gradient in (8) with the natural gradient

gk ↪→ g̃k = ∇̃C(ξ). (16)

It was shown to lead to faster convergence and better minima
than the standard CG descent in MLP training [4], and to
significantly improve the performance in learning a nonlinear
state-space model [6].

Note that the vector operations in (9) are performed in the
Riemannian sense, using Equations (10) and (11). The costly
vector-matrix multiplications can be avoided by noting that

‖g̃k‖2 = g̃TkGkg̃k = g̃TkGkG−1
k gk = g̃Tk gk, (17)

resulting in

βk =
〈(g̃k − g̃k−1), g̃k〉
‖g̃k−1‖2

=
(g̃k − g̃k−1)Tgk

g̃Tk−1gk−1

. (18)

We call this combination the natural conjugate gradient
(NCG) descent.

IV. VARIATIONAL MIXTURE OF GAUSSIANS

The mixture of Gaussians is a probability distribution
which is a linear combination of K Gaussian distributions
[3]

p(x|π,µ,Σ) =
K∑
k=1

πkN (x|µk,Σk) (19)

where x is a D-dimensional random variable and π =
[π1 · · ·πK ]T are called the mixing coefficients while µk
and Σk are the mean and the covariance matrix of the kth
Gaussian component. The inverse of the covariance matrix
Λk = Σ−1

k is called the precision matrix.
In the case of the MoG model, the latent variables Z

discussed in Section II-A are the information on which one
of the K Gaussian components has generated a particular
observation xn. This information will be represented with
a K-dimensional binary vector zn whose elements znk are
either 0 or 1 where 1 denotes the component responsible for
generating the observed data point xn in question. It should
be noted that only one component can be responsible for
generating a single observation and thus the elements of the
vector zn sum to unity. Let N denote the total number of
observed data points. Now, all the N latent variables of the
model can be regarded as forming a latent variable matrix
Z = (znk) of the order N ×K.



Given the mixing coefficients π, the probability distribu-
tion over the latent variables is given by

p(Z|π) =
N∏
n=1

K∏
k=1

πznk

k . (20)

As we want to use conjugate priors in our treatment, we next
introduce a Dirichlet prior for the mixing coefficients

p(π) = Dir(π|α0) (21)

where α0 = [α0 · · ·α0]T is a K-dimensional hyperparameter
vector whose elements are all given by α0 due to symmetry.

Similarly, the distribution over the data X given the latent
variables Z, the means µ and the precision matrices Λ can
be written as

p(X|Z,µ,Λ) =
N∏
n=1

K∏
k=1

N (xn|µk,Λ
−1
k )znk . (22)

Note that we are assuming here that the data vectors xn
are independent and identically distributed. In this case, the
conjugate prior for the component parameters µ and Λ is
given by the Gaussian-Wishart distribution

p(µ,Λ) = p(µ|Λ)p(Λ)

=
K∏
k=1

N (µk|m0, (β0Λk)−1)W(Λk|W0, ν0).

(23)

The joint distribution over all the random variables of the
model is then given by

p(X,Z,π,µ,Λ) = p(X|Z,µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ).
(24)

A. VB EM for the Mixture of Gaussians Model

The VB EM treatment of the mixture of Gaussians model
described here is completely based on [3]. Because of this,
some details of the derivation will be omitted here and we
will concentrate only on the most important results.

We now make the factorizing approximation described by
Equation (5)

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) (25)

and use Equations (6) and (7) along with Equation (24)
to first update q(Z) (E-step) and subsequently update
q(π,µ,Λ) (M-step). The resulting approximate posterior
distributions are

q(Z) =
N∏
n=1

K∏
k=1

rznk

nk (26)

and

q(π,µ,Λ) = q(π)q(µ,Λ) = q(π)
K∏
k=1

q(µk,Λk) (27)

where

q(π) = Dir(π|α) (28)

q(µk,Λk) = N (µk|mk, (βkΛk)−1)W(Λk|Wk, νk). (29)

In expressing the update rules for the distribution param-
eters in Equations (26), (28) and (29), we will find the
following definitions useful:

Nk =
N∑
n=1

rnk (30)

xk =
1
Nk

N∑
n=1

rnkxn (31)

Sk =
1
Nk

N∑
n=1

rnk(xn − xk)(xn − xk)T (32)

ln Λ̃k =
D∑
i=1

ψ

(
νk + 1− i

2

)
+D ln 2 + ln |Wk| (33)

ln π̃k = ψ(αk)− ψ(
K∑
k′=1

αk′) (34)

where D is the dimensionality of the data and ψ(·) is the
digamma function which is defined as the derivative of the
log of the gamma function.

Using these definitions, the parameters rnk of the approx-
imate posterior over latent variables q(Z) which are updated
in the E-step are given by

rnk =
ρnk∑K
l=1 ρnl

(35)

where

ρnk = π̃kΛ̃1/2
k exp

(
− D

2βk
− νk

2
(xn −mk)TWk(xn −mk)

)
.

(36)
The parameters rnk are called responsibilities because they
represent the responsibility the kth component takes in
explaining the nth observation. The responsibilities are non-
negative and their sum over k is one. They can be arranged
into a matrix R = (rnk).

The parameter update equations for the M-step are then
given by

αk = α0 +Nk (37)
βk = β0 +Nk (38)
νk = ν0 +Nk (39)

mk =
1

β0 +Nk
(β0m0 +Nkxk) (40)

W−1
k = W−1

0 +NkSk +
β0Nk
β0 +Nk

(xk −m0)(xk −m0)T .

(41)

B. The Cost Function

We can use Equation (4) along with Equations (20)-(29)
to evaluate the cost function for the learning process

C =
∑
Z

∫
π

∫
µ

∫
Λ

q(Z,π,µ,Λ) ln
q(Z,π,µ,Λ)

p(X,Z,π,µ,Λ)
dπdµdΛ

=Eq {ln q(Z)− ln p(Z|π)}+ Eq {ln q(π)− ln p(π)}
+ Eq {ln q(µ,Λ)− ln p(µ,Λ)} − Eq {ln p(X|Z,µ,Λ)}

(42)



These expectations can be evaluated to give [3]

Eq {ln q(Z)− ln p(Z|π)} =
N∑
n=1

K∑
k=1

rnk ln
rnk
π̃k

(43)

Eq {ln q(π)− ln p(π)} =
K∑
k=1

(αk − α0) ln π̃k + ln
C(α)
C(α0)

(44)

Eq {ln q(µ,Λ)− ln p(µ,Λ)} =

1
2

K∑
k=1

{
D
(β0

βk
− 1 + ln

βk
β0

)
−Hq{Λk}

− β0νk(mk −m0)TWk(mk −m0) + νk Tr(W−1
0 Wk)

}
−K lnB(W0, ν0)− ν0 −D − 1

2

K∑
k=1

ln Λ̃k (45)

Eq {ln p(X|Z,µ,Λ)} =

1
2

K∑
k=1

Nk

{
ln Λ̃k −

D

βk
− νk Tr(SkWk)

− νk(xk −mk)TWk(xk −mk)−D ln 2π
}

(46)

where Tr(A) denotes the trace of matrix A and Hq{Λk} is
the entropy of the distribution q(Λk).

The cost function C given by Equation (42) can be used to
determine when the VB EM algorithm has converged. The
cost function will decrease during each iteration and when
the difference between the previous cost function value Ck−1

and the current value Ck becomes sufficiently small we can
assume that the learning process has converged.

C. Natural Conjugate Gradient for Mixture of Gaussians

To be able to compare the VB EM and NCG algo-
rithms, we assume that the approximate posterior distribution
q(Z,π,µ,Λ) takes the same functional form as in the case
of the VB EM algorithm. Thus, the fixed form posterior
distributions are given by Equations (26), (28) and (29) and
the cost function which is to be minimized by the NCG algo-
rithm is given Equation (42). In this work, we optimize only
the responsibilities rnk and the means mk using gradient-
based methods. All the other model parameters, namely the
parameters αk of the Dirichlet distribution, the parameters βk
controlling the covariance of the component means as well
as the parameters Wk and νk of the Wishart distribution, are
updated using the VB EM update Equations (37), (38), (39)
and (41).

There are a few things that have to be taken into account
when deriving gradient-based algorithms for the mixture of
Gaussians model. Firstly, using the softmax parametrization

rnk =
eγnk∑K
l=1 e

γnl

, (47)

it can be easily seen that the responsibilities are always
positive and

∑K
k=1 rnk = 1. Secondly, if we set the responsi-

bilities rnk, n = 1 . . . N, k = 1 . . .K−1 to some values, the
values of rnK , n = 1 . . . N must be rnK = 1−

∑K−1
k=1 rnk.

As a result, the number of degrees of freedom in the responsi-
bilities of the model is not the number of responsibilities NK
but instead N(K−1). When we are using the parametrization
(47), this means that we can regard the parameters γnK as
constants and only optimize the cost function with respect
to parameters γnk, n = 1 . . . N, k = 1 . . .K − 1. This is
especially important when using the natural gradient.

The gradient of the cost function (42) with respect to mk

is given by

∇mk
C = νkWk(Nk(mk−xk)+β0(mk−m0)), k = 1 . . .K

(48)
and the derivative with respect to γnk is given by

∂C
∂γnk

= Enk − rnkFn, n = 1 . . . N, k = 1 . . .K − 1 (49)

where

Enk = rnk

(
ln rnk − ln π̃k −

1
2

(
ln Λ̃k

−D
βk
−D ln 2π − νk(xn −mk)TWk(xn −mk)

))
(50)

and

Fn =
K∑
k=1

Enk. (51)

We can update the responsibilities rnk without having to
evaluate and store the parameters γnk by noting that

r′nk =
eγnk+∆γnk∑K
l=1 e

γnl+∆γnl

=
∑K
l=1 e

γnl∑K
l=1 e

γnl+∆γnl

eγnk∑K
l=1 e

γnl

e∆γnk = cnrnke
∆γnk

(52)

where r′nk is the new responsibility, ∆γnk is the change in
parameter γnk determined by line search in the direction
of the negative gradient and cn is a normalizing constant
which makes sure that

∑K
k=1 r

′
nk = 1. Thus cn can also be

expressed in the form cn = (
∑K
k=1 rnke

∆γnk)−1 and we can
update the responsibilities using the formula

r′nk =
rnke

∆γnk∑K
l=1 rnle

∆γnl

. (53)

In order to use the natural gradient, we need to know the
Riemannian metric tensor G of the parameter space (m,γ).
The matrix G is given by Equation (13). The resulting matrix
is a block diagonal matrix with blocks Ak = βkνkWk for
each cluster and blocks Bn = −rTnrn + diag(rn) for each
sample, where rn is the nth row of the responsibility matrix
R except for element rnK , that is rn = [rn1 · · · rnK−1].
diag(a) is used here to denote a square matrix which has
the elements of vector a on its diagonal.



The inverse of matrix G required for the evaluation of
the natural gradient is easily calculated by inverting the
individual blocks Ak, k = 1 . . .K and Bn, n = 1 . . . N .
We can now also motivate our earlier discussion about the
number of degrees of freedom in responsibilities. Had we
considered the number of degrees of freedom to be NK,
the row vector rn would have consisted of the whole nth
row of matrix R. This would have made the matrices Bn

singular and we would not have been able to evaluate the
natural gradient.

It was shown in [12] that the M-step of the VB EM
algorithm can be regarded as natural gradient descent. Conse-
quently, it is straightforward to show that the natural gradient
update of the mean mk equals the VB EM update equation
(40) when a constant step size of λ = 1 is used. The main
difference of the NCG and VB EM algorithms for learning
the mixture of Gaussians is therefore the different way of
updating the responsibilities complemented by the use of
conjugate directions and line search in NCG.

V. EXPERIMENTS

The priors are set to the following values for all the
experiments that follow: α0 = 1, β0 = 1, ν0 = D, W0 = 4

D I
and m0 = 0. These priors can be interpreted to describe
our prior beliefs of the model when we anticipate having
Gaussian components near the origin but are fairly uncertain
about the number components.

The initial number of components is set to K = 8
unless otherwise mentioned with each component having a
randomly generated initial mean mk drawn from a Gaussian
distribution with mean m = 0 and covariance Σ = 0.16I.
Other distribution parameters are initially set to the following
values: αk = 1, βk = 10, νk = D and Wk = 4

D I for all k.
All the experiments are repeated 30 times with different

initial means because the performance of the algorithms
can be greatly affected by the choice of initial values. The
algorithms were considered to have converged when Ck−1−
Ck < ε for two consecutive iterations where ε = 10−8N
unless otherwise mentioned.

A. Artificial Data

The artificial datasets used to compare the different al-
gorithms are shown in Figure 3. The cluster data shown
in Figure 3(a) is drawn from a mixture of 5 Gaussians.
All the components are spherical and the center points of
the components are (0, 0) and (±R,±R) where R can be
changed. The data shown in Figure 3(a) has R = 0.3.
All the components have mixing coefficient πk = 0.2 and
the number of data points is N = 1000 unless otherwise
mentioned. The spiral data shown in Figure 3(b) is a three
dimensional helix which is not drawn from a mixture of
Gaussians. This dataset also has N = 1000 data points.

1) Cluster Data: When different gradient-based algo-
rithms are compared using cluster data with R = 0.3, the
results shown in Figure 4(a) are obtained. It can be seen
that the standard gradient and CG algorithms have problems
locating even a decent optimum. Using the natural gradient,
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(b) Spiral data

Fig. 3. Cluster data shown in Figure (a) consists of data drawn from a
mixture of Gaussians with five identical components whose distance from
each other can be changed. Spiral data shown in Figure (b) forms a three
dimensional helix.

the quality of the optimum can be improved while NCG
further improves the performance. It should be emphasized
that the time scale of Figure 4(a) is logarithmic. Standard
gradient is thus over 100 times slower than NCG. In contrast
to other experiments discussed here, this experiment was
conducted using the values N = 500, ε = 10−7N and the
initial number of components K = 5 in order to make the
standard gradient converge in a reasonable time. Out of these
algorithms, only NCG is used in further experiments.

When the performance of NCG, VB EM and VB EM
which is accelerated using pattern searches is compared
using cluster data with R = 0.3, all the algorithms find
the same solution. The computational performance of NCG
and VB EM with pattern searches is quite similar while
the performance of VB EM is slightly inferior to these two
algorithms.

The same algorithms can also be compared with different
values of R. Figure 4(d) shows the CPU time required for
convergence of VB EM, VB EM with pattern search and
NCG. For each value of R, the experiment is repeated 30
times with different initializations. The CPU time shown is
the median of these experiments. It can be seen that with
small values of R NCG outperforms VB EM while with
large values of R VB EM performs better. Curiously, VB
EM with pattern search seems to achieve good results with
all values of R. All algorithms achieved approximately the
same cost function values in this experiment. Thus, the CPU
times shown can be compared directly.

2) Spiral Data: Using the spiral data, it can be seen both
by looking at the learning curves of Figure 4(b) and the
convergence results of Figure 4(e) that NCG is able to find
much better optima than the other algorithms. It should be
especially noted that none of the VB EM runs are able to
locate the best optima found by NCG.

The results of this experiment are however greatly affected
by the location and scaling of the dataset. If the helix is
moved to the upper half space, the performance of NCG
is further improved while scaling of the z-coordinate to the
interval [−1, 1] makes the algorithms mostly converge to the
same optima.
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Fig. 4. Left: Cluster data. Figure (a) shows a comparison of gradient-based algorithms using cluster data with R = 0.3. Note that the time scale is
logarithmic. Figure (d) shows the median total CPU time required for convergence as a function of R in cluster data. Middle: Spiral data. Figure (b)
shows the median cost of 30 runs as a function of CPU time during learning. Figure (e) shows the final cost when the algorithms have converged and the
corresponding CPU time for all the 30 initializations. Right: Image data. Figure (c) shows the median cost of 30 runs as a function of CPU time during
learning of the image data. Figure (f) shows the final cost when the algorithms have converged and the corresponding CPU time for all the 30 initializations.

B. Image Data

In order to be able to compare the different algorithms
using real world data, the algorithms were applied to the
task of image segmentation. The goal is to divide a digital
image into meaningful regions so that some characteristic
of the image significantly changes on the boundary of two
regions. This can be achieved for example by fitting a MoG
to the image data which is interpreted so that each pixel
of the image is a five dimensional data point with three
color coordinates and two spatial coordinates. Segmented
regions of the image can then be constructed using the
responsibilities as measure of which region each pixel should
be part of. It should be noted that in the variational approach
the number of regions does not have to be determined before-
hand but is instead selected automatically during learning.
It should also be emphasized that there exists many other
algorithms more suitable for image segmentation than the
ones used here. Image segmentation is used here simply in
order to easily obtain real world data where the results of
the experiments are easily visualized. Figure 5(a) shows a
100× 66 pixel image of a swan where the desired outcome
of the segmentation is clearly the separation of the swan and
the background. The image data is scaled so that it is within
the five dimensional hypercube which has its center point in
the origin of the space and a side length of 2.

Comparison of VB EM, VB EM with pattern search and
NCG using the image data produces results shown on Figures
4(c) and 4(f). From the median learning curves of Figure
4(c), it can be seen that the initial convergence of NCG is
faster than with the other algorithms but nevertheless no big
differences in the convergence speed to the final optimum
are noted. Examination of Figure 4(f) however reveals an
interesting phenomenon. The best optimum is reached with
16 NCG runs out of a total of 30 while both in the case
of VB EM and pattern search only 3 runs reached the best
optimum. Although the difference in the cost function value
of these optima is small, there is a big difference in the
outcome of the segmentation task. This can be seen by
plotting the responsibilities of each component in the final
solution. This is done in Figure 5 where white represents
responsibility 1 and black responsibility 0. It can be seen
that the best optimum corresponds to the desired solution of
segmentation into two regions while the second best optimum
corresponds to a situation where the image is segmented into
three regions. However, with some other images (not reported
here), NCG found worse local minima than VB EM.

VI. DISCUSSION

By looking at the experimental results of Section V, it
can be said that NCG clearly outperforms other gradient-
based algorithms. This is in line with previous results using



(a) Image data

(b) Best, region 1 (c) Best, region 2

(d) 2nd best, region 1 (e) 2nd best, region 2 (f) 2nd best, region 3

Fig. 5. Visual comparison of the best and the second best optimum
found from the image data. It can be seen that the second best optimum
corresponds to a situation where the image is divided into three regions
instead of the desired two regions.

NCG [6]. It can also be said that NCG is highly competitive
against algorithms based on VB EM. While in many cases the
median performance of NCG is almost equal to algorithms
based on VB EM, it seems to generally find the best optimum
more often than the other algorithms. With the current
implementation, it depends on the data which algorithm
performs the best.

It might be possible to further improve the performance
of NCG. The CPU time required by the algorithm is mainly
spent on two things: on the evaluation of the gradient and on
performing the line search. Therefore it would be worthwhile
to study how various other line search methods compare
against the quadratic polynomial interpolation based line
search used here. It might also be possible to completely
eliminate the need for a line search by using a scaled
conjugate gradient algorithm [8] with natural gradient.

Further research is also required on determining exactly
what kind of data is most suitable for the NCG algorithm. It
is known that EM-like algorithms are prone to slow conver-
gence in situations where the inference of latent variables is
difficult, such as in the case of the cluster data with small
values of R [11]. Based on the results shown in Figure 4(d),
it can be said that NCG seems to be superior to VB EM in
such cases. Interestingly, the pattern search method seems to
also remarkably improve the performance of VB EM with
such data.

VII. CONCLUSIONS

The aim of this work was to gain knowledge on the
performance of the natural conjugate gradient algorithm on

learning models in the conjugate-exponential family. When
compared to the standard algorithm for performing varia-
tional inference in this family of models, the variational
Bayesian expectation-maximization algorithm, we acquired
experimental data which suggests that the NCG algorithm
is highly competitive with VB EM when used to learn the
mixture of Gaussians model. Especially the quality of the
optima found using NCG seems to outperform VB EM in
some cases. It should also be emphasized that while being
a fairly complex algorithm to derive and implement, NCG
generalizes to a broader family of models than VB EM.

On the question of which one of the compared algorithms
is the best choice for learning the mixture of Gaussians
model, it is fairly easy to conclude that given its simplicity
and good performance across a wide range of data sets VB
EM accelerated with pattern searches is the best choice.
However, with certain types of data NCG might help finding
a better local optimum.
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