
Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Antti Halme

Cooperative Heuristic Search with Software Agents

Master’s Thesis
Espoo, May 13, 2014

Supervisor: Professor Pekka Orponen, Aalto University
Advisor: — ” —

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Antti Halme
Title:
Cooperative Heuristic Search with Software Agents
Date: May 13, 2014 Pages: 88
Major: Information and Computer Science Code: T-79
Supervisor: Professor Pekka Orponen
Advisor: — ” —
Parallel algorithms extend the notion of sequential algorithms by permitting the
simultaneous execution of independent computational steps. When the indepen-
dence constraint is lifted and executions can freely interact and intertwine, parallel
algorithms become concurrent and may behave in a nondeterministic way. Paral-
lelism has over the years slowly risen to be a standard feature of high-performance
computing, but concurrency, being even harder to reason about, is still considered
somewhat notorious and undesirable. As such, the implicit randomness available
in concurrency is rarely made use of in algorithms.
This thesis explores concurrency as a means to facilitate algorithmic cooperation
in a heuristic search setting. We use agents, cooperating software entities, to
build a single-source shortest path (SSSP) search algorithm based on parallelized
A∗, dubbed A!. We show how asynchronous information sharing gives rise to
implicit randomness, which cooperating agents use in A! to maintain a collective
secondary ranking heuristic and focus search space exploration.
We experimentally show that A! consistently outperforms both vanilla A∗ and a
noncooperative, explicitly randomized A∗ variant in the standard n-puzzle sliding
tile problem context. The results indicate that A! performance increases with the
addition of more agents, but that the returns are diminishing. A! is observed to be
sensitive to heuristic improvement, but also constrained by search overhead from
limited path diversity. A hybrid approach combining both implicit and explicit
randomness is also evaluated and found to not be an improvement over A! alone.
The studied A! implementation based on vanilla A∗ is not as such competitive
against state-of-the-art parallel A∗ algorithms, but rather a first step in applying
concurrency to speed up heuristic SSSP search. The empirical results imply that
concurrency and nondeterministic cooperation can successfully be harnessed in
algorithm design, inviting further inquiry into algorithms of this kind.
Keywords: concurrency, parallel algorithm, nondeterminism, A*, agent,

cooperation, heuristic search, 15-puzzle
Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Antti Halme
Työn nimi:
Heuristinen yhteistyöhaku ohjelmistoagenttien avulla
Päiväys: 13. toukokuuta 2014 Sivumäärä: 88
Pääaine: Tietojenkäsittelytiede Koodi: T-79
Valvoja: Professori Pekka Orponen
Ohjaaja: — ” —
Rinnakkaisalgoritmit sallivat useiden riippumattomien ohjelmakäskyjen suoritta-
misen samanaikaisesti. Kun riippumattomuusrajoite poistetaan ja käskyjen suo-
rittamisen järjestystä ei hallita, rinnakkaisalgoritmit voivat käskysuoritusten sa-
manaikaisuuden vuoksi käyttäytyä epädeterministisellä tavalla. Rinnakkaisuus on
vuosien saatossa noussut tärkeään rooliin tietotekniikassa ja samalla hallitsema-
tonta samanaikaisuutta on yleisesti alettu pitää ongelmallisena ja ei-toivottuna.
Samanaikaisuudesta kumpuavaa epäsuoraa satunnaisuutta hyödynnetään harvoin
algoritmeissa.
Tämä työ käsittelee käskysuoritusten samanaikaisuuden hyödyntämistä osana
heuristista yhteistyöhakua. Työssä toteutetaan agenttien, yhteistyökykyisten oh-
jelmistokomponenttien, avulla uudenlainen A!-hakualgoritmi. A! perustuu rin-
nakkaiseen A∗-algoritmiin, joka ratkaisee yhden lähteen lyhimmän polun hakuon-
gelman. Työssä näytetään, miten ajastamaton viestintä agenttien välillä johtaa
epäsuoraan satunnaisuuteen, jota A!-agentit kollektiivisesti hyödyntävät toissijai-
sen järjestämisheuristiikan ylläpitämisessä ja edelleen haun kohdentamisessa.
Työssä näytetään kokeellisesti, kuinka A! suoriutuu niin tavanomaista kuin sa-
tunnaistettuakin A∗-algoritmia paremmin n-puzzle pulmapelin ratkaisemisessa.
Tulokset osoittavat, että A!-algoritmin suorituskyky kasvaa lisäagenttien myö-
tä, mutta myös sen, että hyöty on joka lisäyksen jälkeen suhteellisesti pienempi.
A! osoittautuu heuristiikan hyödyntämisen osalta verrokkeja herkemmäksi, mut-
ta myös etsintäpolkujen monimuotoisuuden kannalta vaatimattomaksi. Yksinker-
taisen suoraa ja epäsuoraa satunnaisuutta yhdistävän hybridialgoritmin ei todeta
tuovan lisäsuorituskykyä A!-algoritmiin verrattuna.
Empiiriset kokeet osoittavat, että hallitsematonta samanaikaisuutta ja epädeter-
minististä yhteistyötä voi onnistuneesti hyödyntää algoritmisuunnittelussa, mikä
kannustaa lisätutkimuksiin näitä soveltavan algoritmiikan parissa.
Asiasanat: samanaikaisuus, rinnakkaisalgoritmi, epädeterministisyys,

A*, agentti, yhteistyö, heuristinen haku, 15-puzzle
Kieli: englanti

3

Acknowledgements

Many people have over the years demonstrated persistent and often unfounded
faith in my ideas and abilities, for which I am humbled and deeply grateful. This
generosity has allowed me to discover and explore a scientific and professional field
that I now consider my own. The conversations I enjoyed with the wise people
that crossed my path definitely marked the highlights of my study years and left
me with an education I value far more than my academic achievements.

I thank Prof. Pekka Orponen for supervising and funding this thesis work. I
fully acknowledge the special nature of the opportunity that I was given both here
and also in my previous research project. Pekka provided with me with what many
researchers can only only dream of: unwavering support, thoughtful feedback and
a free hand to pursue my interests.

I thank D.Sc.(Eng.) Vesa Hirvisalo for introducing me to research very early
on, completely changing the trajectory of my studies, if not my life. Vesa pulled me
in to his research group, showed me how coffee is turned into science and opened
so many doors for me that I’m still trying to figure out which one to go through.

I thank Prof. Stavros Tripakis for broadening my view of the academic world
and Ph.D. Timo Tossavainen, my tutoring teacher, who perhaps inadvertently
made me realize what university studies are all about.

I thank Sami Honkonen and the whole Reaktor family for a vitally important
summer breather that I took before this thesis effort. Working in the real world
gave me some much needed perspective.

I also extend my thanks to all of my teachers, from the first grade on, who
always fostered my pursuit of knowledge and interest in science.

Finally, I thank my colleagues, friends and family, whom I never fail to neglect.

The experimental study presented as a part of this thesis was performed using the
computing resources of the Aalto University School of Science “Science-IT” project.

Espoo, May 13, 2014

Antti Halme

4

Contents

1 Introduction 7

2 Background 10
2.1 Parallelism and concurrency . 10
2.2 The parallel computing landscape 12
2.3 Speedup and parallel performance 15
2.4 Parallel programming . 17
2.5 Cooperation . 19
2.6 Cooperative search . 21
2.7 Agents and multi-agent systems . 22

3 A! – Cooperative heuristic search 26
3.1 Vanilla A* . 27

3.1.1 Algorithm details . 27
3.1.2 Variants and related work 29

3.2 Constructing cooperative search . 30
3.2.1 Cooperating agents in multi-agent search 30
3.2.2 Cooperation is communication 32
3.2.3 Actors as minimal cooperating agents 34
3.2.4 Challenges in searching together 35

3.3 The A! algorithm . 36
3.3.1 Overview . 36
3.3.2 Optimality . 38
3.3.3 Cooperation architecture . 39
3.3.4 Algorithm details . 40

3.4 Tradeoffs and implementation challenges 44

4 Solving n-puzzles with A! 48
4.1 The n-puzzle . 48
4.2 Experimental setting . 52

4.2.1 A! implementation . 52

5

4.2.2 Experiment design . 54
4.3 Computational results . 55

4.3.1 Cooperation benefit and scalability 55
4.3.2 Heuristic impact . 60
4.3.3 Path diversity . 62
4.3.4 Hybrid performance . 66

4.4 Discussion . 68

5 Related work 70
5.1 Cooperative search . 70
5.2 Parallel A∗ . 73

6 Conclusion 75

6

Chapter 1

Introduction

No widely accepted, precise definition for an algorithm exists, but Knuth’s no-
tion [74] is at least as good as any, paraphrasing:

An algorithm is a procedure that computes outputs with a special
relation to the inputs and terminates after a very finite number of
precisely defined basic steps.

This an uncontroversial formulation and suitably loose enough to allow not
only sequential algorithms (or serial algorithms), where the presence of a single
instruction processor (core) is implied, but also parallel algorithms, where multiple
processors can work on independent computational steps simultaneously. Parallel
algorithms terminate with output just like sequential ones, but aim to spread the
computing effort evenly out to parallel hardware in pursuit of performance gains.

While failure to correctly isolate simultaneous executions is often problematic,
maintaining execution independence is not always necessary, and in fact the in-
dependence constraint can sometimes be lifted. We adopt the term concurrency
to refer to unconstrained parallelism, where simultaneous executions can freely
interact and influence one another.

Sequential and dependency-free parallel executions are inherently determinis-
tic, but concurrent executions are not. Rendering concurrent programs determin-
istic requires additional control structures that enforce an ordering between the
interacting executions. As this is exactly what concurrent approaches try to do
away with, we can say that concurrent executions are not strictly ordered, but
rather fundamentally nondeterministic.

This nondeterministic nature of concurrency is not reflected in the practice of
parallel programming today. Rather, a great deal of effort is placed in keeping
concurrent programs deterministic through sequentially inspired abstractions and
complex locking choreographies. At the same time many effective algorithms are

7

CHAPTER 1. INTRODUCTION 8

founded on the idea of relinquished determinism in the form of explicitly random-
ized procedures [92].

Uncontrolled interaction between distinct parts is a characteristic feature of
complex systems and processes in the natural world, and yet our computations
must fit this parallel model of independence or minimized communication. It is
true that at the hardware level instruction execution is linearized per functional
unit, but at the same time more and more of these independent execution units
are made available to the programmer.

Parallel programming is hard for a number of reasons, but it is really the dis-
connect between sequential thinking, concurrent execution and parallel hardware
that has kept the software industry back for many years now. The parallel view to
instruction execution matches modern multi-core hardware better than the sequen-
tial one, but all of our algorithms, tools and programming languages were thought
up under the old sequential mindset. New approaches to parallel computing and
concurrency are therefore well worth exploring.

The starting point of this thesis is the unpredictable interaction and intertwin-
ing of concurrent executions. If deterministic control is not maintained, concurrent
programs give different results based on the order in which instructions execute.
With inconsistent results, it is easy to equate concurrency with malfunctioning par-
allel programs, but this view is too insular. The notorious reputation of concurrent
programming is not completely unfounded, but it relies on sweeping statements
about the nature of “acceptable” parallel computation.

In this work we explore a different view to parallel computing, one based on
dependence and cooperation. Instead of working against the natural disorder of
concurrency, we embrace it and try to use it to our advantage. We concentrate on
cooperative interaction and build a cooperation mechanism that is powered by the
indeterminacy inherent in concurrency. We explore computation that is implicitly
random as opposed to being explicitly randomized.

We focus on the cooperation of multiple distinct worker components, agents,
executing concurrently and communicating asynchronously. Our main hypothesis
is that cooperating agents searching together can be more effective than agents
searching in isolation. We test our hypothesis in a series of computational experi-
ments. Our context is heuristic search, an important algorithmic technique with
numerous real world applications from pathfinding to resource optimization.

The main contribution of this thesis is a new kind of a cooperative heuristic
search algorithm, a parallel variant of the A∗ algorithm [53, 115], dubbed A!. The
algorithm features cooperating search agents that communicate asynchronously
and share information in order to collectively maintain a secondary tiebreaking
heuristic. The A! agents explore the search space in an implicitly random fashion,
directed by this dynamic ranking heuristic.

CHAPTER 1. INTRODUCTION 9

We empirically evaluate A! by solving instances from the standard benchmark
problem family of n-puzzles [115, 122]. The performance of A! is compared with
vanilla A∗ and a randomized non-cooperative parallel A∗ variant. The main ob-
servations from the A! experiments are:

• Cooperation benefit: A! consistently outperforms the parallel version of vanilla
A∗ and the explicitly randomized parallel A∗ variant, as measured by fewer
explored states by the winning agent.

• Scaling benefit: A! performance improves with more cooperating agents, but
the returns are clearly diminishing.

• Path diversity: A simple search space exploration visualization, together with
execution data, suggests that the observed performance gain in favor of A! is
due to the more focused nature of the search effort.

• Heuristic impact: A better search heuristic improves A! performance rela-
tively more than that of the competition.

• Hybrid performance: Combining the implicit randomness of A! with explic-
itly random search space exploration does not yield a better search algorithm.

For the n-puzzle problem, the studied A! implementation is not as such competi-
tive against state-of-the-art parallel A∗ algorithms. Rather, the algorithm is a first
step in applying concurrency to speed up heuristic search. Still, the results im-
ply that concurrency, nondeterministic cooperation and implicit randomness can
successfully be harnessed in algorithm design.

We begin with a background review and discuss related work more in chapter 5.
Chapter 3 outlines the A! algorithm and then chapter 4 presents results from the
experimental evaluation. Final thoughts on A!, cooperation, concurrency and
implicit randomness are offered in the concluding chapter 6.

Chapter 2

Background

This chapter gives an overview of the topics that underlie the A! algorithm and
specifically our approach to cooperation. We begin with the concepts of parallelism
and concurrency and aim to elucidate their difference. We then consider the various
dimensions of parallel computing, followed by a brief discussion on parallel speedup
and performance issues. A section on parallel programming presents the broader
context of this work: understanding some of the main issues helps in thinking
about parallelism in a new way.

Cooperation, with its many tradeoffs and challenges, is explored after that. We
first consider cooperation in general and then focus on cooperative search specifi-
cally. We finish off the background chapter with a brief discussion on agents and
multi-agent systems, emphasizing the general idea of reasoning about computation
through objects with identity.

2.1 Parallelism and concurrency
Parallelism is about performance, the goal being execution speedup. Today, com-
puters have multiple processing units and various kinds of specialized parallel hard-
ware that make the parallel execution of instructions possible. Solving problems
efficiently on these parallel computers, with as much of the processing capability
in use as possible, typically requires the design of algorithms that specify multiple
operations for each execution step, i.e., parallel algorithms [13].

Parallelism comes in many shapes and forms. On a parallel computer, the
operations of a parallel algorithm can be performed simultaneously by different
processors, but a single-processor computer can also run parallel algorithms. Fur-
ther, even a single-processor computer can exploit algorithmic parallelism using
the low-level parallel functionality found in modern processors. Matching the par-
allelism described in an algorithm to the parallelism available in the hardware

10

CHAPTER 2. BACKGROUND 11

remains an open challenge in modern computing.
In contrast to the physical reality of parallelism in hardware, concurrency is a

more abstract, logical notion of actions happening at the same time. Concurrency
is fundamentally a software notion, a property of a system with simultaneously
active, interacting parts. While the difference between parallelism and concur-
rency is sometimes subtle or non-essential, understanding the distinction enables
unambiguous discussion. Sadly, however, the terms continue to be used carelessly
and even interchangeably.

Unsatisfied with the lack of precision in specifying these concepts, Buhr and
Harji [18] offer an opinionated view on the matter. They find that having two
distinct terms – one founded on hardware phenomena and the other on software
– is essential, but at the same time in practice there is a strong dependence be-
tween the two: programs are often tailored to exploit only one kind of parallelism.
They arrive in their treatise to a central conclusion: “There are no parallel pro-
grams; there are only concurrent programs that happen to execute in parallel given
appropriate hardware.”

We adopt a policy of using the term ’parallel’ to refer to independent simul-
taneous executions and related hardware phenomena, and reserve ’concurrent’ for
situations where the executions are free to interact and typically represent distinct
logical units in software. We emphasize the deterministic nature of parallelism in
contrast to the nondeterministic behavior exhibited by concurrent executions.

Making good use of either parallelism or concurrency is still a kind of a novelty
today, but both are slowly finding their place as programming languages, tools
and techniques develop [9, 84, 90, 91]. Parallel programming is closely associated
with high-performance computing, while more concurrent programs are found, for
example, in the various back-end processes that web servers run. Locks and other
synchronization primitives have of course been used for a long time to manage
software systems with interacting parts, but there the effort has traditionally been
in keeping independent things independent, rather than in using concurrent inter-
action for gains in an algorithmic sense.

Opportunities for deterministic parallelism have been extracted and exploited
for decades, but concurrency has traditionally garnered much less interest. One
could even say that optimizing hardware for specific flavors of parallelism – and
vice versa – has cast a shadow over parallel programming. Without powerful ab-
stractions, programmers are forced to familiarize themselves with low-level details
of the target systems and the sequential reality of execution pipelines.

In contrast, higher-level views to parallel programming have not really been
explored much yet. Ensuring program correctness using abstractions carried over
from the sequential era has kept programmers busy since the first parallel comput-
ers, with mixed success. Concurrency continues to be a challenge to programmers

CHAPTER 2. BACKGROUND 12

accustomed to reasoning about sequential programs, and today is mostly associ-
ated with the undesirable properties of malfunctioning parallel programs.

This work begins with the assumption that concurrent interaction by itself
can be a useful algorithmic component. Efficient, hardware exhausting parallel
software is important and will continue to be so, but alternative approaches to
organizing concurrent programs have not been explored that much. Instead of
enforcing interaction rules to guarantee correctness, we keep interaction removed
from correctness. Instead of replacing some program logic with concurrency, we
augment a sequential algorithm with cooperation.

2.2 The parallel computing landscape
An overview of parallel computing serves as a backdrop for the cooperative algo-
rithm that we develop in this thesis. Parallel computing capability is today avail-
able in many form factors from local high-performance computing to distributed
clusters, grids and cloud computing setups. Even handheld mobile devices have
hardware support for parallelism. These parallel computers, physical or logical,
feature multiple processing units (cores) and complex high-performance function-
ality that cannot easily be abstracted away from the casual software developer.

There is a long tradition of algebraic transformations and other mathematical
techniques that are commonly used to parallelize numerical computations, often for
a particular application [2, 68, 110]. As a result, parallel hardware designs have
over the years grown organically to meet these very specialized needs. Modern
parallel computers feature complex processing pipelines and rich instruction sets
that offer great parallel processing power to those who can harness them.

Core clock rates used to grow at a predictable rate, but since 2004, the trend has
been towards more rather than more capable processing units [39]. This stems from
the physical realities of energy and power that have begun to constrain maximum
processor frequencies [9]. Beyond manufacturing limits, parallel hardware design
issues today revolve around wire delays, power efficiency and the overall design
complexity [37].

Esmaeilzadeh et al. [39] (see also Bose [14]) voice concerns about the longevity
of the multi-core era, again due to seemingly inescapable physical limitations,
but simply on lackluster hardware utilization as well. The argument goes that
if the challenges of scalable parallel programming are not resolved, the currently
dominant multi-core paradigm will not last. Nevertheless, the future of computing
is parallel, and the immediate future of parallel computing lies with substantial
local parallel processing power [9, 46, 103] complementing massive-scale distributed
computing [8, 29].

Moving on to have a closer look at parallelism, Flynn’s taxonomy [44, 110] offers

CHAPTER 2. BACKGROUND 13

a classical demarcation of parallel computing approaches. While modern hardware
does not fully align with this categorization, the classes define the main tradeoff
that is still relevant today: generality vs. performance. The taxonomy reflects
how instructions and data are organized in parallel architectures and comprises
four categories:

• SISD (single instruction, single data) reflects the plain, sequential von Neumann
architecture, where instruction and data are fetched from memory and executed
on a single processor.

• SIMD (single instruction, multiple data) refers to data-parallelism, where the
same operation is applied at some level of abstraction to several units of data of
the same kind.1

• MISD (multiple instruction, single data) is the rarest of the four, referring to sit-
uations where the same data unit is used in separate computations and multiple
different functional units.

• MIMD (multiple instruction, multiple data), the most general of the four, rep-
resents independent processing units free to process data asynchronously.2

Parallel hardware is MIMD when the cores are fully featured and general purpose,
but caching effects, for example, make the processors much more coupled. SIMD
offers a good approximation of the programming model associated with GPUs and
other accelerators, but here, too, memory access policies and coherence issues dom-
inate the parallel performance. Vector instructions on modern processors exhibit
SIMD behavior at a smaller scale.

Modern parallel computers [37] form a logical computing unit by themselves
or as part of a larger distributed computing setup. The variety and capacity of
parallel processing power available to a software developer today is vast and will
only increase in the future. The challenge is two-fold: first, applications must be
written with a parallel mindset to expose parallelism, and second, the parallelism
must be matched with the abstractions provided by the hardware. Despite decades
of research and a broad effort into making this capability accessible, parallel pro-
gramming remains a somewhat esoteric expert activity.

Parallelism comes in many forms, which are classified by granularity, the scale
at which the effect is evident. Most low-level parallelism close to hardware is de-
terministic, but as larger and larger abstractions are parallelized, their execution

1The wonderful notion of embarrassingly parallel typically refers to (previously) missed op-
portunities for SIMD parallelism [8, 84].

2Even MIMD architectures represent the von Neumann style, as the same system bus serves
all the processing units. One could even say that the “bottleneck” becomes even worse in mul-
tiprocessor systems, as with multiple users the bus gets contented even faster.

CHAPTER 2. BACKGROUND 14

begins to take time and they have to be scheduled to be run. With dependen-
cies, the scheduling order of simultaneous executions begins to matter, and if left
uncontrolled, the results become nondeterministic.

To get a big picture view of parallelism and the origins of concurrency, we next
go briefly through some of the levels of parallelism available to a programmer.3
We start from the lowest levels of deterministic parallelism, but soon encounter
nondeterminism as we conceptually move away from the hardware.

Bit-level parallelism follows from expanded word length in the processor, which
translates into fewer total instructions as longer bit sequences can carry more in-
formation. Instruction-level parallelism is available through pipelining, where a
sequence of instructions can pass through the functional units of the processor in
synchronized lockstep instead of one at a time. If multiple independent functional
units are available, the processor can employ multi-issue techniques and feature su-
perscalarity or an extended instruction set. Multi-threading takes instruction-level
parallelism further by minimizing processor idling time with thread scheduling.

Data-level parallelism (and array parallelism) is available in situations where
the same operation is to be applied to a set of data units. Data-parallelism can
be viewed as both a high-level programming concept as well as a collection of
compiler optimization methods. The map-operation in functional languages and
various work-distribution schemes in distributed computing is an example of the
former view, while vector instructions and dependency-driven loop unrolling are
examples of the latter. Data-parallelism has been an integral part of the parallel
computing story for decades, but is gaining new speed as functional programming
is now becoming mainstream [103].

Function or task-level parallelism offers the most general view to parallelism.
A program with task-parallel parts allows program control to split into multiple
parts in order to facilitate the simultaneous execution of instructions. Threads,
processes and a multitude of other parallel programming abstractions belong in
this category. Task-level parallelism can lead to concurrent phenomena and is
therefore the form of parallelism that we concentrate on in this thesis.

Parallel computing efforts are not constrained by the resources of a single host
machine. The notion of a logical computer can through point-to-point intercon-
nects of various topologies and switching strategies be spread into clusters, cloud
setups and all the way to data-center scale computing. These distributed sys-
tems [29] promise great computing resources in a scalable way that meets the
variable needs of various parallel programs, the flip side being the additional woes
resulting from network unreliability, nonuniformity and the complexity of spread
out control.

3Note that the levels of parallelism are not mutually exclusive, but rather can and should be
mixed and matched as necessary.

CHAPTER 2. BACKGROUND 15

Local and distributed parallelism gives rise to a fundamental divide in parallel
system design. Local parallelism is typically based on a shared memory system,
while distributed configurations operate on a system based on message passing.

Shared memory systems feature threads in a shared address space, communi-
cating and synchronizing through the primitives of the host machine. Message
passing systems typically have a notion of remote processes managing an address
space of their own, and a collection of dedicated message passing routines for
explicit data sharing and synchronization.

Both shared memory and message passing systems can be realized in a variety
of semantic flavors and using many technologies. OpenMP and MPI are currently
the most prominent standards for shared memory and message passing comput-
ing, respectively, with users in both academia and the software industry. A wealth
of parallel programming APIs and libraries from POSIX threads to GPGPU pro-
gramming exist and continue to spring up.

2.3 Speedup and parallel performance
Some fundamental facts about parallel programs limit the performance gains that
can be achieved through parallelism [37, 110]. Parallel programs do not necessar-
ily scale in a linear fashion – many exhibit diminishing returns for each additional
worker. Understanding the relation between sequential and parallel programs en-
ables meaningful discussion on performance and scalability issues.

Denote execution time T , sequential software application Aseq, a parallelized
version of the same application Apar, the fraction of total work (of Aseq) paral-
lelized (in Apar) F , and available processing units P . Amdahl’s law (or Amdahl’s
argument) [6, 112] notes that only the parallel fraction of a program can reap the
benefits of parallel hardware, the sequential part being constant,

T [Apar] = T [Aseq]× [(1−F)+F/P].

Defining ideal speedup from parallelization Spar as the ratio between the sequential
and parallel versions gives

Spar = T [Aseq]
T [Apar]

= 1
(1−F)+F/P

= P

F +P (1−F) <
1

1−F ,

which means that “the maximum speedup (the maximum number of processors
which can be used effectively) is the inverse of the fraction of time the task must
proceed on a single thread” [112].

Amdahl’s law is unforgiving. With a parallel fraction of 0.95 the speedup can
be at most 20 and even with 0.99 the limit is reached at 100. Dubois [37] reminds

CHAPTER 2. BACKGROUND 16

that in practice the scaling that is typically seen follows a “a mortar pattern”:
adding more workers after a certain point only makes things slower. The returns
are first diminishing and then workers start getting in each other’s way.

Speedup also raises a question about efficiency, the fraction of time a processor
is usefully employed by computations that also have to be performed by a sequen-
tial program [112]. Let Cseq = 1 ·T [Aseq] and Cpar = P ·T [Apar] be the cost of a
sequential program running on a single processor and a parallel program running
on P processors, respectively. Then we have notion of efficiency, Epar with,

Epar = Cseq
Cpar

= 1 ·T [Aseq]
P ·T [Apar]

= Spar
P

.

Ideal speedup implies that best possible speedup, with perfectly parallelizing
tasks, is linear, Spar = P , efficiency being Epar = 1. However, due to partially
shared memory hierarchies and other processor phenomena, there are situations
where super-linear scaling [22, 37], with Spar >P , Epar < 1, can occur. “Hot” data
previously fetched for one processor may be used to serve the requests issued by
other processors. Optimizing memory access patterns is standard practice in GPU
programming and other high-performance computing.

Note that all speedup numbers must be taken with a grain of salt, as the
comparison is fair only when the best possible algorithm is used in the sequential
version. If the algorithms used in the sequential and parallel versions are intrin-
sically different, then all bets are off in comparing them. With the best possible
algorithm chosen for both versions, the resulting speedup should always be less
than the ideal. A sequential algorithm can always simulate the parallel algorithm.

Amdahl’s law paints quite a bleak picture for parallel programming, but there
is a bit more to the parallelism story. Amdahl’s law assumes that the size of the
problem to solve is fixed, or that parallelism is used to process the same data
faster, but another assumption can also be made. Assuming that the execution
time is fixed and workload size can increase with the number of processors leads
to Gustafson’s law (or Gustafson–Barsis’ law) [50], with notation as before,

T [Apar] = (1−F)+ P ·F
P

= 1, T [Aseq] = (1−F)+P ·F,

where the sequential process takes P times as long to compute the parallel part.
The sequential part stays the same, but an increase in P results in more work being
done in the same time period, giving a total speedup in relation to completed work,

Spar = T [Aseq]
T [Apar]

= (1−F)+P ·F
1 = 1−F +P ·F,

meaning that for the parallel part of the program, linear scaling is possible. Where
Amdahl’s law condemns parallel architecture for failure, Gustafson’s gives a glim-
mer of hope that parallel computing is indeed worth exploring [37].

CHAPTER 2. BACKGROUND 17

While Amdahl’s and Gustafson’s laws are useful measures, the models are very
simple and do not fully reflect the reality of parallel computing. Other, more
detailed measures for parallel speedup have also been proposed over the years,
including isoefficiency [49], and simplified memory-bounded speedup [124].

Parallel models maintain that executions are independent: concurrent inter-
action is not currently considered a factor in performance comparisons. While it
is true that a single processor can always simulate many, dedicated concurrency-
aware measures could prove useful from a practical performance point of view.

2.4 Parallel programming
In this work we present cooperation as a high-level programming concept based
on concurrent interaction, but a good understanding of the various low-level issues
of traditional parallel programming is still useful. While the agent abstraction
we utilize does have well matching software abstractions, namely actors [1], most
parallel programming today is still based on synchronization primitives. Low-level
mechanisms have proven to be a poor fit for scalable concurrency, but fundamental
parallelism issues cannot be ignored even with modern programming languages.

Herlihy and Shavit [56] give a thorough introduction to the art of parallel
programming in the multi-core era, from fundamentals to advanced techniques:
“The art of programming multi-cores, currently mastered by few, requires an un-
derstanding of new computational principles, algorithms and programming tools.”
Many pitfalls await the unprepared programmer, but even the sheer amount of
complex parallel capability available today can be overwhelming.

Dubois [37] notes that regardless of the parallel programming model [68, 117],
parallel software must be constructed in a specific way that exposes the paral-
lelism. Parallelizable tasks must be identified, partitioned in a balanced way and
coordinated so that the end result appears as if done in entirety by a single pro-
cessor. Maintaining this deterministic behavior4 requires careful control over the
dependencies between the interacting executions.

Parallel programming – as we know it – is hard [9, 18, 46, 47, 90, 91, 110].
Parallel programmers face many design issues and outright problems in construct-
ing well-performing parallel software. While new languages, techniques, tools and
methodologies make it increasingly easy to harness parallel processing power, the
“harsh realities of parallel programming” continue to haunt parallel programmers.

Dedicated and shared memory is organized in several levels of memory hierar-
chy from caches to slow storage, and application data must fit this structure well
or some of the parallelism gains can be lost to various data-logistical overheads.

4Deterministic in the sense that for the same input, effectively the same operations take place
every time.

CHAPTER 2. BACKGROUND 18

Concurrent data access renders programs vulnerable to problems caused by
data races, situations where the outcome of a computation depends on the order in
which memory locations are read and written to. Maintaining memory consistency
is expensive and overall correctness is even harder to enforce.

Synchronization builds on the notion of a critical section, a protected program
segment with an upper bound on the number of simultaneously executing control
threads. Synchronization primitives disallow simultaneity by enforcing mutual
exclusion: locks, semaphores, monitors and other constructs project a sequential
ordering on parallel execution. Some synchronization primitives, such as compare-
and-swap, are hardware supported.

Synchronization primitives are used to build concurrent data structures, trans-
actions and other higher-level concepts that simplify building parallel programs
that function correctly, but as general purpose mechanisms they carry a perfor-
mance overhead. Many distributed systems rely on a semi-centralized consensus
mechanisms to ensure correctness. Parallel programmers are forced to address the
tradeoff between correctness and performance in every application.

Synchronous execution and blocking communication mechanisms are slow, but
asynchronous and nonblocking mechanisms require additional control. Failure to
control interaction may lead to problems that are fatal, but difficult to encounter
in testing, such as deadlock, where all processes or threads are waiting for each
other, and livelock, where the system is not locked dead, but no progress is made
either. Various priority schemes can lead to starvation and priority inversion, in
which the resource distribution mechanism backfires and the system malfunctions.

Parallel programming is hard because programmers must manage various par-
allelism issues at several levels of abstraction simultaneously, all the while en-
suring high performance. Progress in compiler technology, parallel hardware and
programming languages continue to make aspects of parallel programming – espe-
cially “close to the metal” – more manageable, but task-level parallelism and the
effects of concurrency remain an open challenge.

Hardware trends point to computing environments with dozens to hundreds
of cores available; some with dedicated tasks, but most free for applications to
make use of [110]. On the other hand, many platforms feature multiple chips that
are already capable of general purpose computation. In the future the parallel
computing environment will be highly heterogeneous, even within a single host.

Parallel programming is a critical problem that must be solved in order to
really exploit concurrency, but the challenges parallelism presents are so complex,
that it is unlikely that any single solution will prevail. Parallelizing efficiently and
conveniently both locally and in a distributed manner will be key. Opportunities
for parallelism take place at many levels, so approaches that can handle diversity
in parallel execution will do well in the future.

CHAPTER 2. BACKGROUND 19

The general approach to parallelism today is identifying and exploiting oppor-
tunities for parallelism as they arise in the development effort. High performance
requires access to low level abstractions, but ideally hardware details would be
hidden by default, only to be exposed when necessary.

If some of the performance can be sacrificed, then simplified, more generic
parallel abstractions can be made available. This is the path taken in parallel
strategies -based parallel programming, as featured in Haskell and other modern
functional languages. Peyton Jones [103] argues that no single cost model will ever
suit all programs and computers. Functional programming is a great match to
parallel and concurrent programming at scale, and Haskell in particular, as it can
host multiple paradigms simultaneously.

Rauber [110] notes that while there is a lot of research going on in the par-
allel programming community – a collaborative search for the right abstractions
– there are already many effective techniques available. Parallel programming is
still considered to be an expert activity, but the interest in parallel programming
continues to be high. New computing ideas are here desperately needed.

One things is clear: allowing programs to compose several simultaneously exe-
cuting parts – to compute in parallel and concurrently – gives rise to new ways of
viewing computation and solving computational tasks.

2.5 Cooperation
Task-level parallelism features multiple threads of control that either operate in-
dependently or interact with each other in some way. As communication can be
costly, and maintaining control over concurrency is even more so, most parallelism
involves fairly independent subtasks and only limited interaction. While already
this “easy” parallelism can give satisfactory speedup results, it misses the oppor-
tunity of using communication to advance the execution of individual subtasks.

Hogg and Hubermann [62] note that one needs to look no further than people
and human societies to appreciate the power of cooperation. Groups of people
can achieve together more than individuals in isolation and can solve problems
of collective interest more efficiently than any single person acting alone. The
challenge then is in implementing in software these mechanisms of coordination
and communication that seem to work with humans.

Cooperation in a computing context involves agents that interact through infor-
mation sharing. Crainic and Toulouse [31] distinguish between cooperation as an
algorithm design strategy and cooperation as the decomposition of a distributed
algorithm into concurrent processes. We focus on the first paradigm, where we
augment stand-alone problem solvers with an explicit cooperation mechanism that
combines these solvers into a single strategy.

CHAPTER 2. BACKGROUND 20

More precisely, two features can be found in all cooperation mechanisms [31]:

1. a set of highly autonomous programs (APs), each implementing a particular
method, and

2. a cooperation scheme combining these autonomous programs into a single
problem-solving strategy.

Without predetermined order and control, cooperation among APs leads to
unpredictable behavior. Deliberate and explicit cooperation realized in a physical
system yields a sequence of interactions that are not independent, but rather
correlated. This sometimes induces implicit structure and emergent phenomena,
“ripple effects”, commonly found in nature’s dynamic processes [31].

In a computational setting small delays in instruction scheduling and execu-
tion are enough to generate unpredictable orderings, resulting in the notorious
reproducibility issues associated with concurrency. Cooperation schemes aim to
take advantage of this behavior and uncertainty – in much the same way as stan-
dard randomized algorithms do – by making the indirect interactions influence the
participating APs. The challenge, of course, is in controlling the uncontrollable.

The study of indirect cooperation is in the beginning, and concrete results
are scarce. Designing systems that consistently exhibit system-wide emergent
cooperative behavior remains a challenge. Some tools from related fields, such as
nonlinear dynamical systems and chaos theory, have been explored in the past, but
no significant advances have been made in understanding cooperation. Crainic and
Toulouse [32] believe that this trend will hold: “Research in [cooperative methods]
will probably continue to be mostly empirical for some time in the future, while
theoretical models are being built and put to the test.”

The design of information exchange mechanisms is the key to good performance
with cooperative methods. Too little or too much communication can lead to
overheads that defeat the gains from parallelization. Crainic and Toulouse identify
the main cooperation design issues [31]:

• content (what information to exchange),

• timing (when to exchange it),

• connectivity (the logical inter-processor structure),

• mode (synchronous or asynchronous communications),

• exploitation (what each autonomous program does with the received infor-
mation), and

CHAPTER 2. BACKGROUND 21

• scope (whether new information and knowledge is to be extracted from the
exchanged data to guide the search).

Cooperation mechanisms can also be classified by the nature of the solutions
being shared. Adaptive memory methods store partial solutions and combine them
for new complete ones, which are then worked on by cooperating APs [111]. Cen-
tral memory approaches pass complete solutions around in a neighborhood or
population based configuration [83].

2.6 Cooperative search
Search is a fundamental task in computer science and natural target for cooperative
approaches. The overall task and subtasks are very simple to define and there is a
lot of work to distribute, but the problem is not immediately parallel, as the main
abstraction is typically a rooted graph. In a heuristic setting the search algorithm
has extra knowledge about the search space that is not encoded in the graph,
but can be used to direct the search effort. We focus on heuristic search in our
exploration of cooperation in this work.

Crainic and Toulouse [31, 32] together with Hail [30] establish a taxonomy of
cooperative search under the header of parallel meta-heuristics, building on results
from earlier work on parallel local search methods. They identify three dimensions:
search control, search communication and search differentiation.

The search control dimension examines how the global search is managed.
There is either a single process overseeing the proceedings, as in master-slave con-
figurations, or the control has been spread out to several autonomous programs
that manage the search collegially in collaboration or not. These are identified as
1-control (1C) and p-control (pC), respectively.

The search communication dimension reflects information exchange policies.
The main divide is between synchronous and asynchronous modes of communica-
tion. The former is a fixed-schedule policy, where APs stop and share information
in a predefined pattern or as instructed by external authority, while the latter
one emphasizes the APs’ autonomy. Asynchronous communication relies on con-
nections that are established and brought down dynamically during execution.
To further reflect the varying nature of the information exchanged, we have four
communication classes: Rigid (RS) and Knowledge Synchronization (KS) and,
symmetrically, Collegial (C) and Knowledge Collegial (KC).

Approaches following a Rigid Synchronization policy make no use of the simul-
taneously executing searches beyond the best overall solution being established
once all independent APs stop. This the classic independent parallel multi-start
approach, which is easy to implement and may give good results, but does not

CHAPTER 2. BACKGROUND 22

hold up against cooperative methods.
Knowledge Synchronization cooperation strategies take the same general ap-

proach as the Rigid ones, but attempt to take advantage of parallel exploration by
synchronizing at predetermined intervals. In master-slave configurations the mas-
ter collects results and usually restarts the search from the best location. Giving
search APs the power to initiate synchronization with some or all other searches
gives more flexibility. This is the case, for example, in the migration mechanism
in parallel genetic algorithms.

Asynchronous strategies divide into Collegial or Knowledge Collegial based on
the quantity and quality of the information being shared and the “new” knowledge
that is inferred from this exchange. Collegial methods focus solely on the “good”
solutions, or if a memory mechanism is present, extract solutions from there.

More advanced designs are Knowledge Collegial and feature additional func-
tionality for the creation of new information based on exchanged solutions. Asyn-
chronous strategies often use a “memory pool” (or “blackboard”, “data ware-
house”, etc.), a shared solution repository. Using the pool simply as an inter-
mediary storage is perhaps only Collegial, but adding filters, aggregation, learning
or other processing makes the approach more and more Knowledge Collegial.

Finally, the third dimension of cooperative search is search differentiation,
which also a divides in four based on search origin and the search portfolio. Co-
operative search can begin from a single shared point or population (SP) or from
multiple initial points (MP) at the same time. The search strategy portfolio can
consist of multiple different strategies (DS) or just a collection of the same one
(SS). In total, we have four alternatives – SPSS, SPDS, MPSS, and MPDS.

Beyond basic cooperation, some more advanced approaches to cooperative
search have been proposed and explored. Multi-level cooperative search [127] takes
a more controlled view to cooperation by relying on layered information diffu-
sion, much like in hierarchical neural networks. Here, a single AP works on the
original problem, with others positioned on different levels of abstraction and com-
municating strictly with their adjacent levels. Hyper-heuristic methods have also
been successfully combined with cooperative search, with applications in domain-
independent planning [98].

2.7 Agents and multi-agent systems
In the AI tradition the principal objects under study are agents [115]. An agent
is an entity that acts – and does so in a way that makes the concept of a distinct
subject worthwhile. Encapsulating functionality into objects with identity can
make reasoning about systems more intuitive and approachable. Agents are a
natural notion for research that seeks to produce results to be eventually put to

CHAPTER 2. BACKGROUND 23

use in robots and other embodied systems, but applies to general software as well.
Agents can be defined in many ways and different characterizations make sense

in different applications. Perhaps the one fundamental aspect of all agents lies in
their relation to the environment in which they operate. Agents interact with
the environment by receiving percepts, perceptual input, and acting or reacting
accordingly. Agent behavior can also be viewed as a function, with each possible
percept sequence mapped to an action, giving rise to the notion of an algorithmic
agent (or software agent) and agent-oriented programming [93, 120].

Agents model behavior and their properties are dependent on the system be-
ing modeled. Fundamentally, agents can be seen as delegates to whom system
designers give a portion of the overall control. If only simple behavior is desired,
less cognitive capacity is needed in the agents, but as task complexity grows,
more elaborate engineering is called for. Some of the more relevant agent proper-
ties from an algorithmic cooperation point of view are presented below, compiled
from [99, 115, 132]:

• Intelligence: Capacity for meaningful interaction. Percepts are received from
the environment and actions are performed based on that.

• Rationality: Capacity to pursue goals. All activity is directed towards achiev-
ing goals, “doing the right thing”.

• Autonomy: Authority over own behavior up to self-awareness. No separate
user. The ability to self-modify the way in which objectives are achieved.

• Cognitivity: Capacity to learn and improve through experience.

• Contextuality: Capacity for situational assessment. Ability to not only react,
but to reason about events.

• Complexity: Degree of behavioral sophistication ranging from idle repetition
to deep cognitive processes and nuanced actions.

• Locality: Sense of location in the environment. Agents interact only with their
immediate environment. No designated global controller or omniscience.

After agents themselves, the main component in any agent-based system is the
environment. Agents can be understood to be coupled with their environment:
actions make no sense without the environment in which they take place. This
separates agent systems from expert systems, where a computing process simply
reasons about data [132]. In computing, the objective is to find a solution to a
given problem, which involves framing the problem in computational terms. With
agents this configuration is known as the task environment.

CHAPTER 2. BACKGROUND 24

While environment has a very physical connotation, the idea is present in
even the most abstract settings. For example, all communication is defined with
respect to the environment, even if the environment is simply a message passing
topology. Software agents enjoy environments that on one hand are direct, rich
and unlimited, but on the other hand are disconnected from the physical world.

Main dichotomies of environment attributes include [115, 116, 129]:

• Real vs. virtual: Real environments are those that humans interact with
directly, while virtual environments are the private domain of artificial things.

• Discrete vs. continuous: A discrete environment has a natural notion of
isolated units, such as squares in a grid, while a continuous environment operates
on a uniform scale. This applies to time and state and the way percepts and
actions take place.

• Accessibility vs. inaccessibility: Agents can perceive the whole environ-
ment and can collect a complete picture of the state of the environment, or the
environment is observable only partially or not at all.

• Dimensional vs. ephemeral: Agents have a location and take space in the
environment, or their presence is more abstract and transient. For example,
dimensional agents might be able to collide with one another, while ephemeral
agents must rely on abstract interaction.

• Deterministic vs. stochastic/nondeterministic: Deterministic environ-
ments have definite causality: the next state is fully defined by current state
and pending agent action. Stochastic environments have no such guarantee,
as outcomes are quantified in terms of probabilities. Nondeterministic environ-
ments have a set of possible outcomes, but no associated probabilities.

• Episodic vs. sequential: Agents experience the environment in episodes that
are not dependent on each other, or decisions made by agents have an impact
on how the environment presents itself later on.

• Dynamic vs. static: Environment changes during agent deliberation, or not.

• Known vs. unknown: The agent is or is not aware of the nature of the envi-
ronment. For example, an agent that knows the rules of a game is in a different
position compared to another that does not – regardless of the information they
receive about the current match.

The real power of the agent abstraction comes to fore only when the environ-
ment is not dedicated to a single agent, but open to a population of agents. These

CHAPTER 2. BACKGROUND 25

multi-agent systems (MAS) [121, 132] feature agents that are capable of indepen-
dent action, but can also interact and work together as a group to do more than
what comes naturally to one. Multi-agent systems have varied applications in
the real world ranging from games and graphics to logistics and networking, and
can manifest highly desirable properties such as dynamic load balancing, fault-
tolerance, self-organization and scalability.

The general discipline of MAS, and specifically cooperating multi-agent sys-
tems (CoMAS) [99], is a good match to cooperation-based parallel search. The
broad field of computational intelligence [38] overlaps with multi-agent systems,
featuring nature-inspired soft computational methodologies such as artificial neu-
ral networks, evolutionary computation, and fuzzy logic systems. Bio-mimicry, or
bionics, the application of mechanisms found in biological systems to engineer-
ing and technology, has been a treasure trove for various algorithmic ideas, often
featuring agents.

Much of the recent work on agent systems is application driven. Robocup5 is
a notable initiative that aims to advance the state of the art in intelligent mobile
robotics through competitions in competitive soccer and emergency rescue scenar-
ios. Many conferences in the AI, machine learning and computational methods
disciplines welcome multi-agent topics; Panait and Luke [99] give good pointers.

5http://www.robocup.org/

http://www.robocup.org/

Chapter 3

A! – Cooperative heuristic search

Imagine a large derelict mansion and a small object hidden within it.
If you were to look for it alone, you would probably first search through
one room, then another, and so on. Things would be a bit different if
you had friends to help you. You could split up and search different
rooms, or focus on one of the rooms and split the area within it. You
cooperate, but only in deciding how to divide the common task.
Now imagine further that the hidden object had a special property that
made it roughly detectable when it was not fully found yet. It could be
anything from a smell to a deep, low-pitch sound, but it would intensify
when you got closer and quickly fade out over a distance. Suppose that
the hidden object had a “smell” like this – how would you search for
the object now?
Alone you would again go room by room, but this time you would only
explore the entire room if your nose gave you a good reason. You would
simply pop in each one of the rooms enough to get a good sniff and
then decide to either move on or have a closer look.
With friends you can again split the common task. If rooms are divided
evenly, the one with a smell can be found faster, but the cooperation
need not end there. The one who caught the smell can call the others
and you can all focus your efforts on that one room. You cooperate
not only in dividing up the work, but also by passing amongst you
information about your progress.

26

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 27

Determining the minimum cost path through a graph is a classic search problem
that can readily be found in various application domains from navigation to cir-
cuit board layout. The task of finding an optimal path by searching through a
complete search space of all possible paths grows exponentially in size and quickly
becomes infeasible. However, if the target problem admits a heuristic, a suitable
search focusing function, the search effort can be greatly sped up. Heuristic search
employs the heuristic function to direct the search towards regions of the search
space that are likely to lead to good solutions.

This chapter presents a cooperation variant of the standard heuristic search
algorithm A∗. We first review the operation of vanilla A∗ and then continue to
develop a concurrent, agent-based cooperation mechanism on top of it. The third
section presents the complete algorithm, dubbed A! search. The final section offers
a discussion on implementation issues and the tradeoffs present in this approach.

3.1 Vanilla A*

3.1.1 Algorithm details
Formalized in the late 1960s [53] and in diverse use today, A∗ is the most widely
known form of heuristic search. A∗ is an informed best-first search algorithm,
where additional knowledge of the target problem is encoded into the search
as a heuristic function. Chapter 3 of the standard AI textbook by Russell and
Norvig [115] presents an overview of A∗ and its many variants, summarized below.

A∗ can be viewed as an extension of Dijkstra’s graph algorithm [35] for single-
source shortest path search. An evaluation function f(u) is used to decide which
node u of the search space is explored next. The evaluation function reflects a
cost estimate in the search domain, so the node with the lowest estimated value is
selected first. The candidate node list is maintained as a priority queue prioritized
on the estimated value and updated as the search proceeds through the graph.

While Dijkstra’s algorithm follows a plain selection policy based on the effective
cost to reach a given node, g(u),

f(u) = g(u),

A∗ includes a complementing heuristic component, h(u),

f(u) = g(u)+h(u),

that reflects the estimated cost from the state in node u to a goal state. We can
view f(u) in A∗ as the estimated cost of a solution passing through node u: the
first component is the length of the best known path to u and the second reflects

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 28

our understanding of the remaining distance. Note that a null heuristic, h(u) = 0,
yields a search that is equivalent to Dijkstra’s.

Algorithm 1 gives the pseudocode for A∗. The three data structures openHeap,
closedSet and pathMap manage the estimated cost priority queue, visited nodes
and node–node path successor relation, respectively. Nodes are explored one at a
time in min-heap order until a solution is found or the search space is exhausted.
As in Dijkstra’s algorithm, the cost estimates in the priority queue get improved
all through the search as states get explored.

If a goal node is found, the solution path is constructed in reverse from the
pathMap, abstracted here into derivePath. Otherwise, the search advances by
adding unseen neighbors of the current node to the heap and by updating cost
estimates for the nodes already in the heap, if shorter paths have been discovered.

A∗ is optimal in the sense that it always finds the shortest path, if given
a heuristic function h(u) that satisfies certain properties. First, h(u) must be
admissible in that it never overestimates the cost to reach the goal state. As g(u),
the cost to reach u, is known once u is visited, this ensures that the heuristic
never overestimates the true cost of a solution, which would defeat optimality.
Admissible heuristics are in a sense optimistic, as the cost of solving a problem is
estimated to be no greater than it actually is.

Admissible heuristics are sufficient to guarantee optimality for tree-structured
search spaces, but a general graph search requires a slightly stronger property,
consistency (or monotonicity). A heuristic h(u) is consistent if for every node u
and every successor v of u reachable by any action a, the estimated cost of reaching
the goal from u is no greater than the combined cost of getting to v and reaching
the goal from there, a kind of a triangle inequality:

h(u)≤ c(u,a,v)+h(v).

If h(u) is consistent, the values of f(u) along any path are nondecreasing: if v
is a successor of u, then g(v) = g(u)+ c(u,a,v), and

f(v) = g(v)+h(v) = g(u)+ c(u,a,v)+h(v)≥ g(u)+h(u) = f(u).

When A∗ selects a node for expansion, the optimal path to that node has already
been found. By monotonicity, the conflicting node would already have been se-
lected first. Given these properties for h(u), the sequence of nodes expanded in
A∗ is in nondecreasing order of f(u) and the first goal node selected for expansion
must yield an optimal solution – all later (goal) nodes will be at least as expensive.

The optimality of the solution discovered by A∗ does not mean that A∗ is in
a runtime sense an optimal algorithm for finding it. Still, as a best-first search,
A∗ is also optimally efficient up to tiebreaks among equally valued nodes: given
the same heuristic, no algorithm can expand fewer nodes. We return to matter of
tiebreaking in our cooperative algorithm.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 29

Algorithm 1 : Vanilla A* Search
Require: node start, predicate isGoal, heuristic h
Ensure: path from start to nearest node satisfying isGoal is shortest possible
openHeap← FibonacciHeap〈integer,node〉
closedSet← Set〈node〉
pathMap←Map〈node,node〉
openHeap.insert({0, start})
repeat
current← openHeap.pop()
if isGoal(current) then
return path← derivePath(current,start,pathMap)

end if

for each u in current.getNeighbors() do
if closedSet.contains(u) then
continue

end if
g← current.g+dist(current,u)
f ← g+h(u)
improved← openHeap.update(u,f)
if improved then
pathMap.update(u,current)

end if
end for

closedSet.add(current)
until openHeap.isEmpty()
raise failure

3.1.2 Variants and related work
A number of improvements to the vanilla A∗ algorithm have been developed over
the years. Due to the substantial memory footprint of A∗, memory-bounded vari-
ants, such as iterative-deepening A∗ (IDA∗) [78] and simplified memory-bounded
A∗ (SMA) [114], have found use in many practical applications.

Pathfinding in a partially visible graph – a common task in mobile robotics –
requires an incremental, version of A∗, such as Lifelong Planning A∗ (LPA∗) [76]
or dynamic A∗ (D∗) [123]. Heuristic search ideas are applicable to a bidirectional
search setting as well [115].

A huge body of work exists on search heuristics, Pearl’s book [101] being the

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 30

definitive treatise. The admissibility constraint of the heuristic function can be
relaxed at the expense of optimality, but with substantial gains in search speed.
Several A∗ derived algorithms have been shown to be ε-admissible in that the
solution path is no worse than (1 + ε) times the optimal solution. These include
various static [101] and dynamic [105] weighting approaches, and focused selection
methods, such as the two-heuristic A∗ε [102].

Domain-independent heuristics feature prominently in the related field of clas-
sical planning [115], the problems in which are often used for heuristic search
benchmarking purposes [11, 72]. The broad field of metaheuristics [12] explores
methods such as heuristic selection, generation and learning. Problem-specific
pattern databases [33] offer a way to speed up search by often several orders of
magnitude, making the solution of whole new instance categories feasible [115].

Finally, on the theoretical side A∗ and its descendants pose considerable ana-
lytical challenges as the time complexity of the algorithm depends on the heuristic
being applied. Pearl [101] is the definitive textbook for heuristic search; Russell
and Norvig [115] present a more recent view. Farreny [42] offers some theoretical
foundation for heuristic search by proving general properties of completeness and
(sub-)admissibility for a range of A∗-inspired algorithms.

Parallel variants of A∗ are discussed in Chapter 5.

3.2 Constructing cooperative search
In this section we develop an agent-based cooperation mechanism for use in heuris-
tic search. We begin with agents and a multi-agent system formulation of search
and continue with the communication dimension of cooperation. We introduce ac-
tors as the natural agent abstraction and consider some of the challenges that face
agents searching together. The ideas presented here are used in the next section
to establish a cooperative heuristic search algorithm.

3.2.1 Cooperating agents in multi-agent search
Cooperation begins with those who cooperate. We wish to have a mechanism that
enables information sharing among concurrently operating search workers. This
is a natural multi-agent system and we will proceed by defining one using the
nomenclature of multi-agent systems from Section 2.7.

Heuristic search can become computationally intensive in many ways. For ex-
ample, calculating the heuristic values can be costly, the memory footprint can
grow exponentially with the search space, and the main data structure – the prior-
ity queue – can quickly become a bottleneck. The idea in cooperation is to direct
and focus the search by sharing information, which in a sense aims to reduce the

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 31

work done by a single worker. We wish to have a cooperation mechanism that is
straightforward and lightweight enough for this extra effort to be worth it.

An A∗ worker is a simple agent. It receives information about the search graph
one node at a time as the nodes get visited, and proceeds to visit more as soon as
the search progress is reflected in the open and closed lists. The main percept in
A∗ is the set of new nodes in the frontier, including their heuristic values, found by
extending the search to an unopened node. The main action is the maintenance
of the internal data structures – search bookkeeping.

The task in A∗ is to find a node that satisfies a goal defining predicate and
to remember the path taken to reach it. The heuristic function directs the search
towards the goal and we aim to use cooperation to further accelerate this process.
A∗ workers are intelligent agents in that they turn their internally managed state
into actions, and rational in the sense that all these actions are goal-oriented.

A∗ agents cannot be considered highly autonomous or cognitive. While there is
no central controller and the agents are free to keep running their search without
interrupt, the search procedure itself is fixed and typically has no control param-
eters. No behavior changing learning takes place and all the percepts are treated
equally, regardless of their order. A∗ agents make little use of their operational
context, though the mutable priority queue reflects search progress, and the pre-
decessor structure both in a way record history.

On the complexity scale A∗ agents are more in idle repetition. In vanilla A∗,
no use of locality is made beyond the heuristic flavor in search. For example, to
appreciate the difference, incorporating some stochastic elements into the search
in a simulated annealing [115] fashion would increase locality, contextuality and
complexity – and perhaps search performance. The new search would be more in-
telligent as it would explore the search space in a more adventurous way, throttling
this process as the search progresses.

We can describe the environment in a vanilla A∗ system again using terminology
from Section 2.7. The A∗ environment is virtual, discrete, accessible, ephemeral,
deterministic, sequential, static and known. The graph underlying the search,
while possibly implicit, is fixed and fully available if connected. A∗ agents have a
position in their search – current node in the graph – and a rudimentary sense of
direction. With only a single agent the system is fully deterministic.

On the other hand with multiple copies of the agents and meaningful interac-
tion between them, we have a multi-agent system. Adding cooperation into the
search adds a new percept, the shared information, and a corresponding action,
the application of this information into the search state.

Compared to a single-agent system, the environment in a multi-agent search
system sees a fundamental change. As the agents search and share information,
the collective search effort exhibits concurrency if messaging is asynchronous and

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 32

no control is imposed. The environment becomes nondeterministic, as executions
interleave in unpredictable ways, and dynamic, as the order in which information
arrives and gets processed has an effect on the search agents.

3.2.2 Cooperation is communication
The hypothesis underlying this thesis is that cooperating agents outperform agents
in isolation. The difference lies in the relationship the agents have with the envi-
ronment: the percepts that agents receive and the actions they then execute. In
a search context with software agents, this notion is made concrete in the com-
munication policy: cooperation is communication, and isolation the complete lack
thereof. Cooperating agents produce and consume shared information, isolated
agents keep to themselves.

We can identify a suitable cooperation plan by following terminology from
Crainic et al. [30, 31], outlined in Section 2.5. We seek to explore the effect
of concurrency and unconstrained interaction, so instead of a rigid master-slave
approach, we want the overall global search to be managed collegially by several
processes (p-control, pC).

We do away with superfluous synchronization, and aim to simply augment
the vanilla A∗ search in an unobtrusive way (Collegial communication, C). In this
work we focus on revealing concurrent phenomena, so we initially employ the same
search strategy uniformly, but multiple strategies could also be experimented with.
A∗ is point-initialized by nature, so our search differentiation policy is ’Same point,
same strategy’ (SPSS). The full cooperation policy – emphasizing autonomy,
concurrency and simplicity – then becomes pC/C/SPSS.

Details matter for performance, and all the more so when it comes to concur-
rent cooperation. A truism in the parallel computing community goes “There is
no parallelism without tears” [103], referring to the extreme difficulty of having
high-level programming constructs work well with a variety of low-level hardware
details. Squeezing the last bit of parallel performance requires a deep under-
standing of the target problem and the whole computing system, and efficient
cooperation is no exception.

Effective communication designs for cooperative search depend on the underly-
ing hardware, for example, some platforms are good at synchronizing executions,
while others excel in all-to-all message broadcasts. Therefore finding optimal gen-
eral purpose communication strategies for cooperative search is beyond the scope
of this work. We simply wish to augment A∗ with basic cooperation mechanisms
and set the stage for concurrent phenomena.

We will make use of Crainic and Toulouse’s six cooperation design issues [31]
from Section 2.5, but focus on aspects that are relevant to cooperation in A∗. We

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 33

can extract three dimensions of cooperative communication: content (“What?”),
method (“How? Where? When?”), and pattern (“By whom? To whom?”).

The content of messages passed around in cooperation is naturally problem de-
pendent and can take many shapes. A∗ is a graph search looking for the shortest
path, so a partial solution would be a string of nodes (or a node and transforma-
tions) and a current best solution a complete path from a start node to a goal
node. Another approach would be to share history, recently visited states, or some
other set of interesting nodes.

As nodes per unit of time is an important metric in search computation, heavy
communication costs, including message processing, are an issue. Vanilla A∗ is
known to suffer from a substantial memory footprint [115], so small payload mes-
sages are in order. For example, node identity is typically concisely represented
and easily serialized for distribution. On the other hand moving whole open/closed
lists is unmanageable. Functional data structures with persistence and memory
mapping [97] offer some interesting possibilities for cooperation mechanisms.

With the focus being on concurrency rather than optimal cooperation, we
opt for simplicity. A∗ is fundamentally about heuristic-driven exploration, so we
want search workers to help one another – and themselves – in finding the most
auspicious nodes and paths quickly. One viable option is for workers to simply
share the best nodes and heuristic values as they encounter them, and use this
information to direct the search effort as it emerges. This is our approach in this
work: we encapsulate shared best node information into a secondary heuristic. We
elaborate on this in Section 3.3.

The method of communication matters as well. A number of reports argue
in favor of asynchronous messaging over synchronization [11, 23, 31, 66, 72, 98].
Crainic and Toulouse [31] state on cooperation messaging modes: “Compared to
independent and most asynchronous strategies, synchronous cooperative methods
display larger computational overheads, appear less reactive to the evolution of the
global parallel search, and conduct to the premature convergence of the associated
dynamic process.”

With asynchronous messaging, timing is less important from a blocking per-
spective, but is still essential in establishing “the ripple effects” of concurrency. As
progress information trickles down to individual workers, the A∗ paths begin to
meander within their local environment, still staying cohesive globally. Coopera-
tion emerges from this concurrent interaction and path diversity.

Successful cooperative strategies are built on controlled, parsimonious, and
timely exchanges of meaningful information. Communication can be divided into
direct and indirect modes, where the former consists of explicit messaging between
agents and the latter emphasizes the role of the environment. Direct messaging
ranges from one-to-one to broadcasting, with various information diffusion topolo-

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 34

gies – such as meshes and tori – in between. These local-sharing topologies are
designed to reflect the communication channels in the underlying hardware.

Indirect messaging is based on some form of memory external to the agents
and may also include computational elements. If the agent system operates in a
nontrivial environment, some metadata can be attached to messages to further
improve their usefulness. Abstract and simple “data pools” feature in some imple-
mentations, serving as a central messaging source and target.

For cooperative heuristic search, one could either A) carefully maintain disjoint
search space division and have the searching agents know their neighborhood, or B)
let the agents operate more freely and share information gregariously. The former
has been explored extensively in the past [72], but the second – much more in tune
with concurrent phenomena – has received less attention. We explore option B in
this thesis and review some A approaches briefly in Chapter 5.

Finally, the pattern dimension involves the overall messaging protocol. All
workers can consume and contribute progress information and a straightforward
way to do this is to have each broadcast what they know. An even simpler and more
efficient way to diffuse information is to follow a publish-subscribe model [29, 40],
where a unique address is used as a messaging target and all subscribers receive
messages from a broker entity, much like in a web chat.

A publish-subscribe model is a natural choice in distributed systems, but works
well also locally. While the outlined cooperation scheme can be implemented as
a distributed multi-agent system, local configurations enable fast, asynchronous
interaction through shared memory and multi-threading. While issues of connec-
tivity and other hardware specific details are important, they are mostly out of
scope in this study. The actor abstraction that makes reasonable use of local
resources is discusses briefly in the next section.

3.2.3 Actors as minimal cooperating agents
The multi-agent system and its cooperation policy outlined in this chapter point
towards lightweight software components and simple communication mechanisms.
The crux of cooperative search lies with efficient asynchrony, which, together with
multi-threading and interleaved execution, gives rise to concurrency.

Martin [89] argues that there are essentially two views to concurrency: con-
current programming, whose proponents believe that actions are inherently con-
current, and concurrency control, where concurrent access to data is key. The
concurrent programming tradition begins with Hoare’s communicating sequential
processes [59] and actors [1] and currently enjoys a revival in modern program-
ming languages, such as Scala, Rust, Go and Haskell. Concurrency control also has
a long history from early database systems to atomic transactions, transactional
memory and other constructs available to programmers today.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 35

Concurrent programming leaves interaction and synchronization management
to programmers, offering mostly just primitives, while concurrency control tries to
establish some order by abstracting away most of the issues in execution interleav-
ing. We focus on the former, as the aim of this thesis is to explore the possibilities
of free execution entanglement rather than neat coexistence.

We require three kinds of functionality from the agents participating in coop-
erative search:

• the search itself, including the heuristic, data structures and goal predicate;

• asynchronous messaging functionality, non-blocking send and receive; and

• a shared information utilization mechanism, “the secondary heuristic”.

Cooperative search is straightforward to implement on top of existing A∗ pro-
grams by first extracting the search routine into a self-contained worker construct.
Actors [1, 93] are an excellent abstraction for this and readily available as part of
many languages or as a dedicated library. Various message queue primitives get
the asynchronous messaging job done as well, and some even find them prefer-
able to actor abstractions [57]. Both actors and plain message queues are suitable
for broadcasting-based communication and publish-subscribe information diffusion
and even more complex topologies than is needed here.

Additional benefits of the actor abstraction include strong encapsulation and
simple interaction between actors of all kinds. While identical actors are suitable
for examining the issues of interest in this thesis, some performance gains can be
obtained from portfolio-based algorithms, where a population of different actors
cooperate [7]. Even actors of the same kind can exhibit divergent behavior and
take on roles dynamically [96], if equipped with enough cognitive capability.

3.2.4 Challenges in searching together
As a graph-based algorithm, A∗ is hard to parallelize. Kishimoto et al. [72] note
that three different kinds of sources of overhead make efficient implementations
difficult to realize. Search overhead occurs when the parallel version expands
more nodes than the sequential one, arising from non-disjoint search space division.
Division schemes also suffer from short-sightedness, as a found solution cannot be
guaranteed to be optimal. Synchronization overhead refers to the idle time wasted
at synchronization points, such as locks on shared data. Communication overhead
occurs when information is exchanged in a distributed setting.

Reducing these overheads is challenging because of interdependencies. For
example, reducing search overhead can increase communication costs. With an
agent-based concurrency-oriented approach as previously described, we choose to

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 36

suffer some search and communication overhead, and gain in minimal synchroniza-
tion needs. The rationale behind this setup lies with the resources locally available
in modern computers: many cores, fast interconnects and plenty of memory.

Careful partitioning of the search space in a shared memory setting typically
leads to work stealing designs, where processors maintain local work queues and
even out misbalanced division of the total effort by acquiring more work from
their neighbors. In A∗, this further leads to either centralized open-list strategies,
where concurrent access is a major issue, or decentralized ones with load balancing,
revisiting and duplicate detection issues. Kishimoto [72] et al. give an overview of
the various methods that have been tried to address these issues.

Not all parallelization mechanisms are based on search-space partitioning. One
can parallelize the computation performed on each state, but this is less useful if
the problem has naturally very simple nodes. Running a different search algorithm
on each processor gives rise to portfolio algorithms [65], which have been successful
in, e.g., SAT competitions [7, 128].

Another approach is to follow a parallel window search policy [106], a variant
of IDA∗ where each processor is searching from the same root, but with a different
bound, i.e., different iterations of IDA∗ are run in parallel. Dynamic approaches
are also possible: the EUREKA system [27] uses machine learning techniques to
automatically configure parallel IDA∗ for various problems.

The next section introduces our cooperative heuristic search algorithm that
offers a concurrent take on searching in parallel.

3.3 The A! algorithm
We are now ready to discuss our cooperative search algorithm, A!. We begin with
an overview of the algorithm and then show that A! maintains the optimality of
A∗. We then proceed with a description of the cooperation architecture and give a
complete pseudocode representation of the algorithm. Variants of A! are discussed
briefly at the end of the section.

3.3.1 Overview
The A! (a-bang)1 algorithm is a parallel best-first heuristic search that employs
asynchronously communicating software agents as concurrently cooperating search
workers. Given a graph, a start node, a goal predicate and primary and secondary

1The exclamation mark is not only present in the logotype of the author’s university, but also
denotes message transmission in CSP [59] and its descendants.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 37

G
t

u

s

v
w B
A

Figure 3.1: A! search on a grid graph with two agents, A and B. A chooses
between graph nodes t and u, both with equal estimates for the shortest distance
(1st heuristic) to goal G. In vanilla A∗ the decision is arbitrary. In A!, A will
choose u next, because it has a lower distance (2nd heuristic) to the best node
that it has heard of, the starry one discovered by B.

heuristic functions – denoted h(u), and ĥ(u,v) for all u and v in the graph –
A! finds a single pair shortest path from the start node to a goal node.

A! consists of N agents that each run a distinct upgraded version of A∗ search.
Each agent performs a heuristic search starting from the start node, but also
participates in the cooperation effort: the agents share information about their
progress with their fellow agents. An additional message broker entity can be used
to streamline the message traffic flow.

The primary heuristic is the one used in A∗-like graph search itself, while
the secondary heuristic serves as a tiebreaker between equally good next-to-open
candidate nodes. Vanilla A∗ simply maintains an estimated value priority queue,
but A! workers aim to discern differences between nodes valued equally interesting
in the queue. This is the crux of A!: where vanilla A∗ always selects the head of
the estimated value priority queue, A! chooses among up to k best nodes of equal
value based on information acquired during the search.

Figure 3.1 illustrates the overall A! concept, showing A! with two agents sharing
information about best encountered nodes. Agent A is able to use information pro-
vided by B to prefer one of the equally valued alternatives based on the secondary
heuristic. The primary heuristic guarantees optimality.

The primary heuristic can reflect the secondary one, h(u) = ĥ(u,g), for all
nodes u and goal node g, but this is not necessary. For example in Figure 3.1,

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 38

we have A! executing over locations in a grid graph with Manhattan distance, the
length of the direct path along the grid without obstacles, as both the primary
and secondary heuristic.

As discussed in Section 3.2.2, one simple, effective choice for information to
share is the best encountered node. This directly implies a distance-based sec-
ondary heuristic, where each worker is directed towards the areas of the search
space that have been fruitful in the past. More elaborate information sharing and
utilization schemes are well worth exploring in applications, but lie outside the
main focus of this work.

Note that if agents track not just information shared by others, but their own
progress as well, the degenerate case of A! with a single agent is not necessarily
vanilla A∗. With even one agent, passing progress information as a parameter to
the secondary heuristic function results in a momentum-based eager search, where
candidates close to recently opened ones are ranked high among nodes that are
equal with respect to the primary heuristic.

3.3.2 Optimality
Some heuristics have degenerate corner cases where they perform poorly by giving
overly optimistic, low estimates. This can be remedied to some extent by using
multiple competitive heuristics and selecting, e.g., the maximum or average value.
If two heuristics are independent from one another, two heuristic estimates can
also be combined by adding them together, but this is generally not the case:
the sum of two cost estimates can very well be greater than the real remaining
distance. This breaks heuristic monotonicity and the optimality guarantee.

A! uses two heuristics in concert, but does not add them together. A! maintains
optimality – finds the shortest path – if the primary heuristic is monotonous. We
give a straightforward proof of the optimality of A! following the argument for the
optimality of A∗ itself given by Russell and Norvig [115].

Theorem (Optimality of A!). We claim that A! is optimal. This follows from
two facts: a) the values of f(u) = g(u) +h(u) along any path are nondecreasing,
and b) whenever A! selects a node for expansion, the optimal path to that node has
been found. Let S be a subset of all equally good next-to-open candidate nodes.

First, for all u and their included successors v ∈ S, g(v) = g(u) + c(u,a,v) for
some action a and cost function c. By definition of S, f(v) is the same for all
v ∈ S, while g(v) and h(v) can vary. As in single-source A∗, we have

f(v) = g(v)+h(v) = g(u)+ c(u,a,v)+h(v)≥+h(u) = f(u),

for all v and u, so no matter what node is chosen from the set, the values of f(u)
along all resulting paths is nondecreasing.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 39

Second, if A! would select for expansion a node to which an optimal path has
not been found, there would have to be another frontier node w on the optimal path
from start to node v. Because f is nondecreasing along any path, by the systematic
frontier expansion property of A∗, w would have a lower f -cost than v and would
have been selected first. This holds for all v ∈ S independently. But then we have
both f(v)< f(w) and f(w)< f(v) – contradiction.

Therefore, any node v ∈ S selected as the highest ranking node according to
ĥ(v,b) maintains the nondecreasing order of f , and so on the discovery of the first
goal node g, the optimal path has been found.

Corollary (Generalized A!). By the previous argument, any ranking function
can be used in selecting among the nodes in S.

3.3.3 Cooperation architecture
From Section 3.2 we know that asynchronous communication between agents is
at the heart of cooperative search. The workers each run their own upgraded
A∗ search, but share their progress as they explore the search space. The agents
send and receive information that directs and diversifies the paths they explore
in a nondeterministic way. Simply by heeding these hints at their own pace, the
agents as a collective demonstrate algorithmic randomness that is not explicitly
encoded into the algorithm, but rather emerges implicitly as the search progresses.

The core of the cooperation mechanism in A! is a shared, best-effort notion
of a globally superior node seen in the graph by any of the agents. If an agent
encounters a node that has a better cost value, g(u) +h(u), than what the agent
considers to be the current best, the others agents are informed about the node.
The message broker entity can lie here in-between the agents to facilitate simple
communication interfaces through centralized channels while offering other benefits
of indirect communication, such as filtering.

Note that instantaneous information diffusion and integration is not the pri-
mary goal: delay and disagreement leads to diversity, as agents can – even from
the same state – proceed to explore different parts of the search space. This is
vital especially in the beginning of the search. On the contrary, to further accen-
tuate this effect, acceptable best node improvement can be set to zero, or even
time-dependently at-random negative as in simulated annealing. Short-circuiting
the best-update mechanism by directly updating the best with the current adds
a momentum effect that manifests itself already with a single agent: the ongoing
search prefers nodes near the previously explored ones.

Because we want each agent to be able to pass information to every other
agent, we have a kind of a chat layout for messaging, which is well served with a

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 40

publish-subscribe design pattern [40]. This is a very scalable design for distributed
systems, but works equally well in a local setting.

Finally, program termination on path discovery can take place through a special
message over the standard messaging channel, but as a one-off event happening
in a local setting, a shared termination variable can also be used as an expedient
way to conclude all search effort.

The actor programming abstraction encapsulates the upgraded A∗ search of
A! into a main worker routine and enables participation in the publish-subscribe
scheme through asynchronous messaging primitives. The agents explore the search
space, share information about their progress and make use of the progress of
others. We continue with a more concise description of the algorithm.

3.3.4 Algorithm details
We present the entire A! algorithm as a collection of pseudocode snippets, be-
ginning with Algorithm 2, which serves as the main body of the algorithm. The
algorithm essentially just launches search workers and waits for one of them to
finish. A message broker entity takes care of the publish-subscribe communication
scheme. The message broker allows for the workers to interact with one another
through simple port interfaces.2

Algorithm 2 : A!Search

Require: N > 0, node start, predicate isGoal, heuristic h, heuristic ĥ
Ensure: path from start to nearest node satisfying isGoal is shortest possible

mb← MsgBroker()
for i= 0 to N do
workers[i]← A!Solver(mb.portOut,mb.portIn,start, isGoal,h, ĥ)

end for
for each worker in workers in parallel do
worker.launch()

end for

wait for termination
return path← getPath(workers)

Given the problem instance, including the two heuristic functions discussed in
Section 3.3.1, the algorithm returns a path from the start node to the found goal

2The port abstraction is in line with how, e.g., the ZeroMQ library [58] presents publish-
subscribe interfaces.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 41

Algorithm 3 : A!Solver
Require: port portIn, port portOut, node start, predicate isGoal,

heuristic h, heuristic ĥ

openHeap← FibonacciHeap〈integer,node〉
closedSet← Set〈node〉
pathMap←Map〈node,node〉

current← start
repeat
if isGoal(current) then
terminate(current,start,pathMap)

end if

closedSet.add(current)

for each u in current.getNeighbors() do
if closedSet.contains(u) then
continue

end if
g← current.g+dist(current,u)
f ← g+h(u)
improved← openHeap.update(u,f)
if improved then
pathMap.update(u,current)

end if
end for

peekList← openHeap.getPeekList()
if isEmpty(peekList) then
terminate()

end if

current← A!Select(peekList,portIn,portOut,h, ĥ)
openHeap.remove(current)

until termination

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 42

Algorithm 4 : A!Select

Require: list peekList, port portIn, port portOut, heuristic h, heuristic ĥ
Ensure: select is the most promising node in peekList according to ĥ on best
update, updateH ← asyncRecv(portIn)
if updateH < bestH then
best,bestH← update,updateH

end if
select← peekList.pop()
selectD← ĥ(select,best)
for each u in peekList do
d← ĥ(u,best)
if d < selectD then
select,selectD← u,d

end if
end for
if h(select)< bestH then
best,bestH← select,selectH
asyncSend(portOut,{best,bestH})

end if
return select

node, if one is reached. The path is derived from a path map of successor nodes
by the worker that finds a goal first, and then forwarded on termination to the
main function. This mechanism is abstracted here into getPath(..).

The workers run A!Solver, the procedure outlined in Algorithm 3, which has
four parts inside a loop that is repeated until program termination. The first part
is the node visit, where we check whether the current node is a goal based on
the isGoal predicate. If it is, we derive the solution path, pass it forward and
terminate. This process is abstracted into terminate(..).

The second part is the A∗ expansion. We use the heuristic function to estimate
remaining distances for the legal neighbors of the current state and update the
data structures as we discover new nodes. The priority queue openHeap maintains
the unopened node queue order by estimated total cost. The pathMap maps nodes
to one another, establishing the successor relation used in solution path derivation.

The third part is a cursory peek into the up-to-date openHeap. The idea in
A! is to obtain a list of interesting nodes and be smart about selecting among
them, whereas in vanilla A∗ the routine simply draws one from the top. The peek
is a bounded traversal of the Fibonacci heap, where we build a list of nodes that
share the cost of the top node. The peekList therefore contains nodes that are
equally good in the sense that they share the same estimated total cost.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 43

Algorithm 5 : MsgBroker
best,bestH← none,maxint
repeat
update,updateH← blockRecv(portIn)
if updateH < bestH then
best,bestH← update,updateH
publish(portOut,best,besth)

end if
until termination

The final part contains the selection routine, which for A! is given as Algo-
rithm 4. After one of the nodes has been selected – in one way or another – it is
removed from openHeap and turned into current. Node removal from a Fibonacci
heap is a relatively fast operation, thanks to the decreaseKey functionality.

The selection routine A!Select features the real core of the A! algorithm: the
cooperation functionality and the application of the secondary heuristic. The first
part begins the cooperation routine asyncRecv, that brings new information into
the agent. The read is asynchronous in that if there is no message, the algorithm
proceeds without any delay. The routine shown in Algorithm 4 gives a version with
best-information being shared and aggregated, but other cooperation schemes can
naturally also be constructed here.

The second part features the inclusion of the new information, as encapsulated
into the secondary heuristic function. The peekList is essentially sorted on ĥ,
the second heuristic, and the highest ranking node is then selected. The routine
concludes with the mirror procedure of the first one: new data is sent for others to
process. The listing shows a small communication overhead optimization, where
the agent only informs others, if it believes that it has made progress.

To complete the tour of A! , Algorithm 5 gives the routine used by the message
broker entity to manage traffic. The MsgBroker actor waits for updates and then
distributes them through the publication mechanism, if progress has been made.
More elaborate cooperation schemes could be implemented in much the same way.

Alternative selection policies to A!Select include the random selection routine
(Algorithm 6), and vanilla selection (Algorithm 7), which turns the algorithm into
a convoluted version of the vanilla A∗. Hybrid policies, such as Algorithm 8,
are of course possible. The selection policies are explored and compared in the
experiments presented in Chapter 4.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 44

Algorithm 6 : A?Select
Require: list peekList
Ensure: select is a random node drawn from peekList
return select←Random.choice(peekList)

Algorithm 7 : A*Select
Require: list peekList
Ensure: select is the node in peekList that would be chosen in vanilla A∗
return select← peekList.head()

Algorithm 8 : A”Select

Require: list peekList, port portIn, portOut, heuristic h, ĥ, probability p
Ensure: we use A!Select with a probability of p, A?Select with 1−p
if Random.nextF loat(0,1)< p then
return A!Select(peekList,portIn,portOut,h, ĥ)

else
return A?Select(peekList)

end if

3.4 Tradeoffs and implementation challenges
Implementing A! presents challenges beyond the complexities of the algorithm it-
self. In this section we consider some of the practical issues that arise in implement-
ing A!. These include memory locality, search encapsulation, worker interaction,
memory usage, communication patterns, data structures, knowledge representa-
tion and concurrency support in programming languages.

Locality is a major design decision in parallel computing. Both local shared
memory approaches and distributed message passing schemes have their benefits.
One of the early inspirations for this work is in the ongoing multi-core revolu-
tion [9], but the A! algorithm itself can function as a distributed one as well.
Indeed actors, for example, are a great fit for a distributed system [1].

However, the distributed direction presents additional challenges that are not
that relevant to demonstrate cooperation, which is the main focus of this thesis.
The ideas discussed here are well worth exploring in a distributed setting, in concert
with work division schemes, for example, but these topics are outside the scope of
this work and therefore left for future research.

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 45

Another decision closely related to the local/distributed issue is that of execu-
tion encapsulation. We use actors, which typically are implemented with threads,
while a process-based abstraction is more suitable for a distributed system. We
wish to emphasize the autonomy of the search workers – exploration of search
space at their own terms – so open and closed lists are not shared, but rather
each worker manages their own. This follows from reports indicating that lock
contention on shared data structures is highly undesirable [20, 72].

Note that in contrast to most parallelization ideas described in the existing
literature – such as partitioning and hashing – in this work we take a nonchalant
view of the whole issue, suffering work duplication while emphasizing cooperation.

The A! algorithm features explicitly shared progress information as the only
piece of shared data. A more indirect interaction mechanism would emphasize
the role of the environment abstraction, which has certain appeal in the emergent
cooperation sense [15, 31], but this chosen approach gives a nice balance of order
and “ripple effects”. The essence of A∗ search is there, but wrapped in a thin cloak
of nondeterminism.

Another general issue is the choice in using A∗ and not the memory-efficient
variant IDA∗ [78]. IDA∗ makes it possible to do iterative improvement and use
many workers, the flip side being repeated path traversal. These are essentially the
same issues as the repeated path troubles faced in undivided search space. IDA∗ is
based on A∗, but the approach to search space exploration is differently. IDA∗,
and other iterative approaches, are exhaustive on each iteration, so there is less
to be gained from cooperation: exploration order does not matter. On the other
hand, in A!, the cooperation can quickly lead to good progress exactly because the
order does matter.

The real tradeoff is in the memory blowup multiplied by agent numbers: there
is redundancy in the agents in an autonomous model. The IDA∗ search variant,
with path-only memory, is a good fit to shared lists and cleanly split search space,
and the parallelization [72], even with its issues, is straightforward – do more of
the same. A! is a bit more messy.

In A! all of the agents can proceed in any direction and can explore any set
of nodes in the graph. More structure could well be imposed, and indeed many
powerful algorithmic ideas are based on making good use of the structure of the
problem instance, but the core of agent-based cooperation is autonomy. Various
local, shared and distributed memory mechanisms developed to deal with memory
blowup in A∗ should work without issues in A!.

Emergent cooperation, where the entanglement of the participating agents is
even more prominent, is a feature in the work of Nitschke [96], Crainic [31] and
others. Much of this work lies at the very fringe of computer science and suffers
from a lack of sound results, but some ideas, such as bio-inspired algorithms [38, 96]

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 46

and natural computing [12, 24] are gaining some traction.
Effective cooperation means that the agents are able to communicate in a

smooth, unobtrusive way that does not slow down their main functions too much.
What is sent matters, when it is sent matters, all-to-all or something else, un-
derlying hardware – all of this matters. Best-sharing, as previously described, is
one way to do it, a simple one, but sending more state data and being clever in
reasoning about it will likely give even better results. The flip side is the commu-
nication cost. With simple messages, the agents spend a minimal time processing
the inbound and outgoing data.

Hickey [57] argues that actors are an unnecessary complication on top of mes-
sage queue semantics. Scholliers et al. [119] also find actors to not be the ideal
abstraction for concurrent programming. The main critique is focused on scala-
bility, which is perhaps a lesser concern here in a local setting, as core count is
currently and in the near future only in the low tens rather than thousands [14, 39].
The criticism is valid, though, and actors are introduced here only as one way to
enable cooperation. Actors are not the center piece here.

One practical issue in implementing A! turned out to be the difficulty of ter-
minating quickly and in a clean fashion. Concurrent programming is notoriously
difficult, yes, but simply killing the process leaves something to be desired, too.
There is the issue of multiple agents finishing at the same time, and returning
but a singe value. In the reference implementation, rudimentary synchronization
was used to manage this, but more scalable solutions are needed especially for a
potential distributed version of the algorithm.

The main computational bottleneck of the A! algorithm is the priority queue
used to sort nodes by their estimated cost. The Fibonacci heap [28, 45] is a good
match to the modifiable priority queue needs of the A∗. There are also d-ary
heaps [69], which are fast for the same problem, and the highly complex Brodal
queues [16] of which there is a persistent functional version [17]. For A!, the
peek functionality outlined in A!Solver (Algorithm 3) requires an at most k-deep
traversal of the tree to gather a peekList, so a data structure optimized for k-deep
peeks would be ideal, but currently one is not available.

While a long time coming, the functional view to parallelism is poised to re-
ally break through in the near future: uniprocessors are not getting any faster,
but compilers and functional languages targeting multi-core processors are getting
better [104]. The reactive style of programming [10], with its absence of explicit
control flow, is likely to play well with parallel programming in general [23] and
cooperation-based algorithms, such as A!, in particular.

A! is straightforward to implement using programming language constructs
like the goroutines in go, actors in Erlang, and the core.async library in Clojure.
State and its management are important in all A! implementations, as opting in

CHAPTER 3. A! – COOPERATIVE HEURISTIC SEARCH 47

for unshared lists makes efficient memory usage a priority. Nodes must be very
efficiently represented, and caching and other tricks should certainly be made use
of, but on the other hand this would go against the idea of programming at a
high level of abstraction. Ultimately one hopes to decouple correctness from the
practical complexity without losing efficiency [23].

A∗ search is a straightforward sequential algorithm, but the inherently parallel
A! must give up some of that simplicity in favor of enabling cooperation. What
is lost in turning a deterministic algorithm into a concurrent nondeterministic one
is gained in performance. The next chapter presents a suite of experiments that
show how A! performs in the n-puzzle problem context.

Chapter 4

Solving n-puzzles with A!

This chapter presents a series of A! experiments conducted on a collection of in-
stances from the n-puzzle family of sliding block puzzles. We first give a simple
problem formulation for the puzzles and then establish a suitable version of the
A! algorithm for solving them. The rest of the chapter is dedicated to reporting
results obtained from computational experiments.

We focus on two dimensions that are especially interesting from a coopera-
tive search point of view: the overall benefit from cooperation and the extent to
which the method is scalable. Additional experiments in explored path diversity
and heuristic function sensitivity offer more insight into the workings of the new
algorithm. Finally, a hybrid algorithm combining A! and random exploration is
briefly tested.

The results show that A! consistently outperforms both vanilla A∗ and a ran-
domized parallel version of A∗. Adding more agents to A! clearly improves the
performance, but the returns are diminishing. A! appears to utilize given heuris-
tics better than the reference algorithms and explores the search space in a slightly
more efficient way. Hybridizing A! with randomization does not result in a more
capable search algorithm, indicating that A! evades the superfluous paths that a
randomized search spends time on.

4.1 The n-puzzle

The n-puzzle1 is a classic sliding block (or tile) problem family with a long history
in AI research [36, 115] – and an even longer history outside it [70, 122]. The
15-puzzle attracted attention from the general public and mathematicians alike
from as early on as the 1870s [122].

1We adopt this slightly awkward name to refer to the family of (m2−1)-puzzles of this kind.

48

CHAPTER 4. SOLVING N -PUZZLES WITH A! 49

2
3 1

45
6 78

(a) A start state.

2 31
4 5 6
7 8

(b) The standard goal state.

Figure 4.1: 8-puzzle states. On the left an initial state; one of the two hardest
instances in its class with an optimal, shortest solution sequence of length 31. On
the right one of the possible goal states. The other common goal state has the
empty slot in the top left corner, but any other configuration can also be used.

The 8-puzzle features a 3× 3 board with eight numbered blocks and a blank,
the 15-puzzle having 15 blocks on a 4× 4 board, and so on. The objective of the
puzzle is to arrange the blocks to match a goal configuration by sliding the blocks
horizontally and vertically onto the blank square, constantly making way for new
moves. Figure 4.1 shows an initial state and a goal state for the 8-puzzle.

While literally a toy problem, the n-puzzle is less trivial than may seem at
first glance. Finding a solution to instances of even a large version of the puzzle is
not very hard, but the task of finding the shortest sequence of moves to reach the
goal configuration is computationally interesting. The task of finding a k-bound
sequence of moves for the general m×m (or m2− 1) version of the puzzle was
proven NP-complete by Ratner and Warmuth [108].

Russell and Norvig [115] give a search problem formulation:

• States: A state describes the location of each of the tiles and the blank.

• Initial state: Any state can be designated as the initial state. Any goal state
can be reached from exactly half of all the possible initial states. This follows
from a parity argument on the cycles of a permutation representation of the
state [109].2

2This fact was used to great effect by game designer Sam Loyd in the 1870s: an odd-parity
15-puzzle state cannot be turned into an even-parity goal state by any sequence, so he was able
to issue cash prize challenges for solving his unsolvable puzzles. [122]

CHAPTER 4. SOLVING N -PUZZLES WITH A! 50

• Actions: The actions can be described relative to the blank, with Left, Right,
Up, and Down. The set of enabled actions is dependent on where the blank is
on the grid, with moves resulting in blocks being off-board being illegal.

• Transitions: Given a state and a legal action, the resulting state is straight-
forward to compute as a move of the blank to an adjacent location by moving
the targeted block in the the currently blank location.

• Goal test: Check whether the state matches the goal configuration.

• Path cost: Steps cost 1 each, so path cost is the number of steps in the solution.

Sliding block puzzles from the n-puzzle family are often used as test problems for
new search algorithms, because the task is easy to describe and the search space
size grows quickly with larger boards. Russell and Norvig [115] justify the use of
heuristic search methods by the numbers as follows.

The average solution cost for a randomly generated 8-puzzle instance is about
22 steps and the the 8-puzzle has an average branching factor – average out-degree
of the nodes in the search graph – of about three: four moves are possible when the
blank is in the middle, three on the edges and two in the corners. An exhaustive
tree search to depth 22 would look at about 322 ≈ 3.1× 1011 states but a graph
search cuts this down to 9!/2 = 181,400 distinct states – a cut by a factor of
170,000. This is completely manageable, but doesn’t scale: the 15-puzzle has
around 1.3 trillion states, and the 24-puzzle around 1025.

Heuristic algorithms and efficient data structures and representations are needed
to bring random instance solution times to under few seconds. Some common
heuristics for the n-puzzles include, in increasing order of effectiveness [115]:

• Misplaced tile count: The number of tiles in positions that do not match
their goal positions. For example, with block 5 in the right place, the state in
Figure 4.1a has a heuristic value of 7 with respect to the goal state in Figure 4.1b.

• Manhattan distance: (taxicab/L1-/rectilinear distance) The sum of distances
the tiles are from their target positions, counted as moves along the grid. For
the state in Figure 4.1a we have, from block one, 4+2+4+2+0+2+4+3 = 21.

• Manhattan distance with linear collisions [52]: The linear collisions ex-
tension to Manhattan distance makes use of the fact that two blocks on the
right row, but in the wrong order must pass each other to reach their targets.
Figure 4.1a has collisions on each row, e.g., 8−7, 5−4, and 3−1. Linear colli-
sions can be calculated for both rows and columns and can be combined for a
single “criticism” on top of regular Manhattan distance. Hansson et al. [52] give
a complete algorithm.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 51

1

2

3 4

5

6

78

9 10

1112

13 14

15 1 2 3 4

5

9

13
Figure 4.2: Pattern databases map configurations to partial solutions. The blue
tiles in the state on the left can be moved to their target positions on the right in
some number of steps, which is then stored in a massive lookup table. Solving the
entire puzzle takes at least as many moves as the length of the shortest sequence
that is needed to solve the sub-task formed by the blue tiles.

• Walking distance: Similar in spirit to linear collisions, the walking distance
heuristic is based on walk patterns that approximate the horizontal and vertical
moves necessary to take a block to the target. The walking distance heuristic
was described and implemented by Takahashi Ken’ichiro in 2002, but it remains
unpublished in English. Some details are available on his website.3

• Pattern databases [34]: The very general idea of a pattern database is to
store a collection of precomputed solutions to sub-problems, effectively trading
execution time for memory. A number of different subtasks can be used, and
their selection is mostly dictated by the available resources. Figure 4.2 shows the
kind of entries one could use in a 15-puzzle pattern database. Multiple databases
– or indeed any heuristics – can be combined by taking, e.g., the maximum or
the average of the values they provide. Addition is typically not possible, as it
generally results in overestimation.

• Additive/disjoint pattern databases [43, 79, 80]: The logical continua-
tion to multiple competing databases is to have them collaborate. If pattern
databases are built of disjoint sets of patterns, counting only moves by nodes in
the their respective sets, the sum of non-overlapping heuristics stays admissible.
Korf and Felner [80] present a top/bottom half divided pattern heuristic for
the 15-puzzle that takes 550 megabytes of memory and reduces the number of
3http://www.ic-net.or.jp/home/takaken/e/15pz/index.html

http://www.ic-net.or.jp/home/takaken/e/15pz/index.html

CHAPTER 4. SOLVING N -PUZZLES WITH A! 52

generated states by four orders of magnitude compared to Manhattan distance
heuristic. Note that Manhattan distance can be considered an extreme example
of a disjoint set pattern heuristic: each set is a single block.

• Learned heuristics [67]: Most recently, the tools of machine learning have
been applied to discovering heuristics for the 24-puzzle. The idea in learned
heuristics is that solving some instances gives an idea about the nature of the
problem: encountered subtasks can be used to solve similar subtasks in new
instances. The major challenge is – not unlike in machine learning in general –
in finding good sets of features to learn on. Taking the learning concept a step
further leads to hyper- and metaheuristic methods [19].

The heuristics outlined above have been designed for the sequential search case,
but are equally applicable in parallel search as well.

4.2 Experimental setting
The experiments described in this chapter are based on repeated executions of four
versions of heuristic search, all based on a single implementation: vanilla A∗, a
randomized parallel variant A?, the cooperative A!, and the hybrid A′′.

In this section we explain some details about the implementation and outline
the experiments themselves. Related material is available online4 and at request.

4.2.1 A! implementation
The implementation used in the experiments is based on an A∗ for n-puzzle im-
plementation by Brian Borowski5, denote BBI. The Java program features an
A∗ solver as well as a version of IDA∗, of which the former was extended to a
cooperative version in this work. Using IDA∗, BBI is capable of solving random
15-puzzle instances in a few seconds and the hardest 80-move 15-puzzles in under a
minute on a 3.30GHz Xeon E3-1230 V2 machine. The vanilla BBI-A∗ uses roughly
a gigabyte of memory per minute, exhausting typical desktop computing resources
on medium difficulty 15-puzzles (∼50-60 move optimal paths).

BBI features three heuristics: Manhattan distance (MD), MD with linear col-
lisions (LC) [52], and a 6-6-3-partitioned disjoint pattern database (PDB) for the
15-puzzle [43]. The solver can use state space dividing work pool multi-threading,
and uses efficient integer state representation with shift operations as well as a
custom Fibonacci heap backed priority queue [28]. BBI can also solve 8-puzzles.

4https://github.com/ajhalme/coop-agents
5http://www.brian-borowski.com/Software/Puzzle/

https://github.com/ajhalme/coop-agents
http://www.brian-borowski.com/Software/Puzzle/

CHAPTER 4. SOLVING N -PUZZLES WITH A! 53

Algorithm 9 : Recursive Fibonacci heap peek (getPeekListR)
Require: list peekList, node top, integer minCost, integer depth, integer k
Ensure: The peekList contains nodes with a cost of minCost
if top.cost > minCost or peekList.size()≥ k or depth≥ k then
return

end if
peekList.add(top)
for each child in top.GetChildren() do
getPeekListR(peekList,child,minCost,depth+1)

end for
if top.right 6= top and top.right 6=min then
getPeekListR(peekList, top.rigth,minCost,depth)

end if
return

The following modifications were done in order to build A! on top of BBI-A∗:

• A∗ functionality was encapsulated into a worker agent,

• a MessageBroker component was added and connected to the workers in a
publish-subscribe pattern [29, 40] using ZeroMQ [58],

• the Fibonacci heap was extended with a recursive peekList-routine, Algo-
rithm 9, that allows simple k-deep equal-cost node peeking into the heap,6

• (node, cost)-tuple sending and receiving functionality was added to workers, and

• the selection policies were implemented, notably a!Select with cooperation and
the secondary heuristic function, ĥ.

The secondary heuristic was set to be MD-to-best for the MD primary heuristic,
and LC-to-best for LC and PDB primary heuristics, i.e., for MD: h= ĥ=MD, for
LC: h= ĥ=LC, and for PDB: h=PDB, ĥ=LC.

Four selection routines were implemented for the experiments. The cooperative
search routine A! (Alg. 4, Section 3.3.4), based on the secondary heuristic ĥ, was
the main experimental target. It was pitted against the random (A?, Alg. 6) and
vanilla selection (A∗, Alg. 7) policies. Additionally, a hybrid selection routine
based on a simple combination of cooperative and random selection (A′′, Alg. 8)
was used at various split thresholds p: Pr(A!) = p, and Pr(A?) = 1−p.

6This is a very rough data structure hack in lieu of a modified heap that keeps track of not
only the top node, but up to k nodes that share the minimum cost of the top node.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 54

4.2.2 Experiment design
The test suite is a randomly generated collection of 8- and 15-puzzle instances.
The instances were solved with BBI and grouped by the length of the optimal
solution, the shortest sequence of moves from the given start position to the goal
position. Randomly generated impossible instances – off-parity with respect to
the goal state – were discarded.

Grouped this way, the instances within a given group proved to differ greatly in
their difficulty. Regardless of method and heuristic, the average number of opened
nodes during the search for instances in a optimal length group covers a range
of several orders of magnitude. Further, as the methods under evaluation have
stochastic and nondeterministic properties, runs on a given instance are themselves
subject to nontrivial variation.

For example, after visiting on average some 2500 states per agent, A! with eight
agents and the PDB heuristic finds the optimal 52 step path for the 15-puzzle

[0 9 8 10 14 13 12 3 6 7 4 15 11 5 2 1],

shown here as permutation vector over the (n+1) tile locations. This is in contrast
with another 15-puzzle, also optimal in 52 steps,

[3 6 9 13 7 0 4 11 5 1 14 12 10 15 8 2],

which requires about 200,000 node visits per agent. The relative standard devia-
tion for A! runs is around 20% for both. This difficulty variability was observed
with all evaluated methods, as well as Borowski’s IDA∗ implementation, and is in
line with reports in the literature [78, 80]. The grouping is still justified, as with
enough instances in each group, some general trends become apparent.

To experimentally show that one method is conclusively superior to another
with all of this variability requires a vast suite of instances and many runs on
them, but this is beyond the scope of this work. With many interesting variables
to choose from in this setup, a full study with the hardest instances would take an
inordinate amount of resources, so we instead present the results from a reasonable
test suite and hope to glean some insights and general trends from the data.

Runtime is not considered at length here nor later in the work. The goal in
this work was not to build a competitive n-puzzle solver, but to study cooperation
effects in A!. While the implemented solver can solve medium difficulty 15-puzzles
in a few minutes, Borowski’s program, for example, solves random 15-puzzles much
faster and even the hardest instances in under a minute. Optimized state-of-the-
art solvers defeat the evaluated implementations in every aspect and operate at
a completely different scale, working on instances from the next level, the 24-
puzzles, and beyond. We return to the relationship between this work and the
state-of-the-art in Chapter 5.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 55

The majority of the computational experiments presented in this work were
performed using the computer resources of the Aalto University School of Science
“Science-IT” project. The cluster that ran the test suites comprised a mixture of
blade servers, featuring 2.6GHz Opteron 2435, 2.67GHz Xeon X5650, and 2.8GHz
Xeon E5 2680 v2 processors.

To give a sense of the experimental scale, the final results shown in Figures 4.3
through 4.6 alone required about a full year of single core processing time. There
are 20 groups of 100 instances, each instance is iterated five times and lasts upwards
of 60 seconds on average. We evaluated two methods with 1, 2, 4, 6, and 8 agents
at one core per agent, and did one extra run for the vanilla A∗ case.

4.3 Computational results
This section presents an overview A! performance in comparison with vanilla
A∗ and a non-cooperative random selection variant A?. We first show that A!,
featuring cooperation and the secondary heuristic based ranking, overcomes both
vanilla A∗ and A?. Second, we show that while the returns are diminishing, having
more agents improves the overall performance of both A? and A!, but that coop-
eration benefits slightly more, making a preliminary case in favor of cooperation.

Third, we focus on a few instances that represent the problem well and look
at how the explored path diversity differs between the methods under study. We
try to understand the qualitative nature of the methods and give a simple visu-
alization of the search space explored by each method. Fourth, we consider the
relative performance gains from an improvement in the heuristic, and argue that
the cooperative method benefits more from the improvement.

Finally, we consider a hybrid approach, A′′, where we combine A! and A?, as
featured in Algorithm 8, and show that the resulting algorithm does not represent
an improvement: A′′ appears to explore states that A! correctly chooses to ignore.

4.3.1 Cooperation benefit and scalability
To see how A! performs against the competition, we set the algorithms to solve a
suite of instances and observe how many vertices are opened during the searches.
Figures 4.3 and 4.4 show 100 15-puzzles from each of the 40–59 optimal length
groups, run on A∗, A? and A! in five agent configurations: 1, 2, 4, 6, and 8 agents.
The primary heuristic used here is the 6-6-3 pattern database. We use the median
of five runs: this was found to be a reasonable compromise between result quality
and available computing resources.

The figures show how the three algorithms compare on instances of the ran-
domly generated instance set, pruned to show only instances that pass in 10 min-

CHAPTER 4. SOLVING N -PUZZLES WITH A! 56

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Visited vertices for winning agent, vanilla A* search

V
is

it
e
d
 v

e
rt

ic
e
s
 f
o
r

w
in

n
in

g
 a

g
e
n
t,
 c

o
o
p
e
ra

ti
v
e
 A

!
s
e
a
rc

h

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.

1 agent

2 agents

4 agents

6 agents

8 agents

Par

1 A lin. reg.

2 A lin. reg.

4 A lin. reg.

6 A lin. reg.

8 A lin. reg.

Figure 4.3: Relative performance of A∗ (x-axis) and A! (y-axis). The black line is
par, so data points below it represent instances for which A! performs better than
A∗. Agent count is evaluated in five batches – 1, 2, 4, 6, and 8 agents – with the
respective trend lines showing how the methods compare.

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Visited vertices for winning agent, random A? search

V
is

it
e
d
 v

e
rt

ic
e
s
 f
o
r

w
in

n
in

g
 a

g
e
n
t,
 c

o
o
p
e
ra

ti
v
e
 A

!
s
e
a
rc

h

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.

1 agent

2 agents

4 agents

6 agents

8 agents

Par

1 A lin. reg.

2 A lin. reg.

4 A lin. reg.

6 A lin. reg.

8 A lin. reg.

Figure 4.4: Relative performance of A? and A!. As before, the data points and
trend lines below par-line reflect the benefit from cooperation. The slopes vary
from around 7

10 to 8
10 , reflecting a 25−40% performance difference in favor of A!.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 57

utes using the methods. We focus on the opened states per core -metric, specifically
the number of states the winning agent opens as it searches. This correlates with
the total number of opened nodes over all agents, including repetition, as agents
explore states at roughly the same rate. It also correlates with total execution time
with harder instances, but below five seconds, this measure is less informative.

In Figure 4.3 we see the majority of the points falling under the black par-line,
indicating that search using A∗ is more sluggish than with A!, with more states
being visited before the optimal solution path is found. Some instances above the
par-line – especially for the one agent case – show the vanilla algorithm outper-
forming A!, likely due to the secondary heuristic being misinformed about the best
direction. This is the cost from going depth-first over breadth: all heuristics can be
fooled. The trend lines still validate A!. With eight agents, the slope approaches
1
2 , indicating that on average A! needs to see only half the states as vanilla A∗.

In Figure 4.4 we compare A! with A?. The trend lines are more uniform this
time, suggesting that cooperation is beneficial in all the tested agent configurations
and to a somewhat similar degree. A clear majority of the instance data points
lie under the par line, in favor of A!. Overall, the data supports the cooperation
benefit hypothesis. For the one agent case we also see the momentum effect from
the secondary heuristic: the single agent favors the nodes opened recently.

The trend lines are roughly in reverse order compared to Figure 4.3, with
A? suffering more from fewer agents. While the effect is not substantial, this
suggests – at least for these implementations – a difference in diminishing returns
in favor of A?: adding an agent improves A? performance more than that of A!.
Cooperation is still valuable, A! outperforms A? for all agent configurations, but
A! could benefit from some kind of diversity boosting mechanisms that reduces
search overhead and makes additional agents less redundant.

Figure 4.5 offers a different view to the instances. The figure shows the runs
grouped by optimal solution path lengths, with each method and agent configu-
ration as a separate data point. The value on the y-axis is the group mean of
instance medians for the number of states visited by the winning agent – 100 in-
stances at five runs per instance per point. We see a rather consistent pattern
with the vanilla A∗ setting a baseline, A? runs improving on that a bit, and finally
multi-agent A! getting the lowest values.

Searching efficiently in parallel requires a scalable algorithm. Adding new
agents clearly increases A! performance, but less so than for A?, as is visible in
Figure 4.6. The figure shows runs in optimal length groups, with means of the 100
instances in each group forming a trend line for each of the agent configurations.
The group trends are normalized with respect to vanilla A∗ performance. Finally,
the trend lines themselves are averaged over for a pair of thick mean-of-means
curves that summarize over the thousands of data points drawn evenly from the

C
H
A
PT

ER
4.

SO
LV

IN
G
N
-PU

ZZLES
W

IT
H

A
!

58

 0

 50000

100000

150000

200000

250000

300000

350000

400000

V
is

it
e
d
 v

e
rt

ic
e
s
 f
o
r

w
in

n
in

g
 a

g
e
n
t,
 g

ro
u
p
 m

e
d
ia

n

A
*

A
?

G
4
0

A
!

A
*

A
?

G
4
1

A
!

A
*

A
?

G
4

2
A

!
A

*
A

?
G

4
3

A
!

A
*

A
?

G
4
4

A
!

A
*

A
?

G
4
5

A
!

A
*

A
?

G
4
6

A
!

A
*

A
?

G
4
7

A
!

A
*

A
?

G
4
8

A
!

A
*

A
?

G
4
9

A
!

A
*

A
?

G
5
0

A
!

A
*

A
?

G
5
1

A
!

A
*

A
?

G
5
2

A
!

A
*

A
?

G
5
3

A
!

A
*

A
?

G
5
4

A
!

A
*

A
?

G
5
5

A
!

A
*

A
?

G
5
6

A
!

A
*

A
?

G
5
7

A
!

A
*

A
?

G
5

8
A

!
A

*
A

?
G

5
9

A
!

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.

A*, 1−8 agents

A?, 1 agent

A!, 1 agent

A?, 2 agents

A!, 2 agents

A?, 4 agents

A!, 4 agents

A?, 6 agents

A!, 6 agents

A?, 8 agents

A!, 8 agents

Figure 4.5: Vanilla A∗, random A? and cooperative A! performance on 15-puzzles grouped by the length of their
optimal solution paths with each group having 100 instances. The figure shows some general trends for search
configurations of 1, 2, 4, 6, and 8 agents. The medians get more erratic towards the harder instances to the right
hand side of the figure, but the general trends are already visible at this experimental scale. Cooperation appears
to be more beneficial as instance hardness increases.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 59

0

0.5

1

1.5

2

A*

A*

1A? 2A? 4A? 6A? 8A?

40

1A! 2A! 4A! 6A! 8A!

40

41

41

42

42

43

43

44

44

45

45

46

46

47

47

48

48

49

49

50

50

51

51

52

52

53

53

54

54

55

55

56

56

57

57

58

58

59

59

15−puzzle runs, length groups 40−59, 1−8 agents, PDB heuristic.
V

is
it
e
d
 v

e
rt

ic
e
s
 f
o
r

w
in

n
in

g
 a

g
e
n
t,
 m

e
a
n
s
 b

y
 g

ro
u
p
,
n
o
rm

a
liz

e
d
 t
o
 A

*

A*

A? normalized group mean, 1−−8A

A! normalized group mean, 1−−8A

A? mean of norm. group means, 1−−8A

A! mean of norm. group means, 1−−8A

Figure 4.6: A∗-normalized length group means – 100 instances per group, five iter-
ations per instance – demonstrating the scaling benefit from adding more agents.
The trend lines overlap to a moderate extent, suggesting rudimentary asymptotic
bounds for the algorithms.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 60

40−59 optimal path length range.
For some of the groups in Figure 4.6, A! gets close to the 1

2 threshold in A∗-
relative performance, which also appears to be a plateau for general scalability with
regards to this implementation if not the approach itself. While individual groups
exhibit erratic behavior, the overall trend is quite clear: A! not only outperforms
A∗ and A!, but scales to at least a few agents, but with quickly diminishing returns.

Overall, the cooperative A! algorithm appears to consistently overcome both
vanilla A∗and the random A? for the 15-puzzle instances considered here. While
the n-puzzle is a standard benchmark for heuristic search, it is only a single prob-
lem – and a simple one at that. It is unclear whether the depth-first orientation,
a property of the secondary heuristic in A!, is beneficial only in problems such as
the n-puzzle, or generalizes to many search contexts, but the presented results at
least encourage further study.

4.3.2 Heuristic impact
Three of the heuristics introduced in Section 4.1 were explored in this computa-
tional experiment for the 8- and 15-puzzles: Manhattan distance (MD), Manhattan
distance with linear collisions (LD), and a 6-6-3 disjoint pattern database (PDB).
Linear collisions improve MD significantly, and the PDB heuristic is greatly more
accurate than LC. All the methods evaluated here explore several orders of mag-
nitude more states with MD than with PDB.

Figures 4.7 and 4.8 show how the number of participating agents and the used
search method influence the runs, respectively. On the x-axis we have the linear
collision heuristic and on the y-axis the PDB heuristic, with instances solved with
both heuristics as the data points. The black bar represents heuristic parity, where
both heuristics direct the search equally well, while data points below it are in favor
of the PDB heuristic. The PDB heuristic dominates LC completely.

From Figure 4.7, with data points colored by agent configurations, we see a
somewhat uniform distribution of instances over the projection space. This leads
to trend lines maintaining essentially the same direction: in comparing heuristic
impact, the number of agents appears to be next to irrelevant.

We see a bit more impact when we color the data by method. In Figure 4.8,
we have the exact same figure, but this time trend lines are drawn by method.
While the effect is not substantial, there is a difference now between the trend
lines. The interpretation is that A! benefits more from an improvement in the
heuristic function. One reason for this could be that a good heuristic is a better
match for deep rather than broad exploration.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 61

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

 50000

100000

150000

200000

250000

300000

Visited vertices, LC heuristic

V
is

it
e
d
 v

e
rt

ic
e
s
,
6
−

6
−

3
 P

D
B

 h
e
u
ri
s
ti
c

15−puzzle runs, lengths 30−57, 1−8 agents, LC/PDB heuristic.

1 agents

2 agents

4 agents

6 agents

8 agents

1 agent lin. reg.

2 agents lin. reg.

4 agents lin. reg.

6 agents lin. reg.

8 agents lin. reg.

Figure 4.7: Heuristic comparison with data grouped by agent configuration. The
trend lines being essentially the same indicates that the number of agents is not
strongly correlated with heuristic impact: regardless of method, two agents benefit
from a better heuristic as much (or little) as eight agents.

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000
 0

 50000

100000

150000

200000

250000

300000

Visited vertices, LC heuristic

V
is

it
e
d
 v

e
rt

ic
e
s
,
6
−

6
−

3
 P

D
B

 h
e
u
ri
s
ti
c

15−puzzle runs, lengths 30−57, 1−8 agents, LC/PDB heuristic.

A?, 1−8 agents

A!, 1−8 agents

A? lin. reg.

A! lin. reg.

Figure 4.8: Heuristic comparison with data grouped by method. The now more
visible difference in trend lines suggests that A! benefits more from the improved
heuristic than A?. The slope is about 1

8 for A?, and around 1
10 for A!.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 62

4.3.3 Path diversity
As discussed in section 3.2.4, one major challenge in parallel search algorithms lies
with work distribution and search overhead due to replicated efforts. Vanilla A∗ is
deterministic, so having multiple agents run that algorithm offers no algorithmic
benefit, but presents a useful base case for experimental study. In particular,
running multi-agent vanilla A∗ gives a rough idea about the kinds of overheads
involved in even non-communicating parallel execution.

For this work, we wish to see how A! fares against A∗ and A? as measured in
explored states. We can view parallel search overhead as path diversity – or rather
lack thereof – referring to the order in which search agents explore the search
space. If different agents mostly explore the same sates, path diversity is low,
while perfectly non-overlapping agents follow highly diverse paths. Intuitively, we
expect A∗ to have extremely low path diversity, but the impact that cooperation
and the secondary heuristic have on path diversity in A! is far less clear.

Beyond plain numeric evaluation, we turn to a visualization scheme to give us
an informative view of the search space in which the algorithms operate. From
the wealth of methods to consider for this task, we opt for topology preservation
over accurate distances and select the nonlinear dimensionality reduction method
of self-organizing maps (SOM) [77, 85].

A SOM is an artificial neural network (ANN) trained unsupervised, i.e., without
validation labels and external error signals, to represent the input space in fewer
dimensions. Given a collection of input samples, a SOM discovers a neighborhood
maintaining map, with which subsequent data units can be projected into an
output space that is more approachable for interpretation. SOM functionality is
readily available in the MATLAB Neural Network Toolbox7 and other computing
environments. Here, we treat SOM as a black box method and employ it using
reasonable defaults: batch weight/bias training rules, mean squared error guide
measure and two hundred learning iterations.

The states of the n-puzzle are conveniently represented as permutation vectors.
For example, we have the permutation vector s1, [8 6 7 2 5 4 3 0 1], for the
initial state we saw in Figure 4.1a. Viewing the tile locations as dimensions yields
a natural distance function over the permutations. A more involved permutation
metric [118] – mindful of the nontrivial transformations reflected in the legal puz-
zle moves8 – could well be employed, but simple Euclidean distance in (n+ 1)
dimensions is sufficient for our SOM visualization purposes.

7http://www.mathworks.se/products/neural-network/
8E.g., [8 6 7 2 5 4 3 0 0] is an illegal state in the 8-puzzle, as it does not feature all of

the tiles. While [8 6 7 2 5 3 4 0 1] is legal in the previous sense and only one “change” away
from s1, the state shouldn’t be that close to it in the puzzle: the tile locations involved are on
different sides of the board, and the new state is not even of the same parity as s1.

http://www.mathworks.se/products/neural-network/

CHAPTER 4. SOLVING N -PUZZLES WITH A! 63

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

1

2

(a) Solution path

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

200

400

600

800

1000

1200

1400

(b) Vanilla A∗

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

200

400

600

800

1000

1200

1400

(c) Random A?

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

200

400

600

800

1000

1200

1400

(d) Cooperative A!

Figure 4.9: Visualization of A∗, A? and A! on 8-puzzle [8 6 7 2 5 4 3 0 1].
The heatmaps are derived from a 9×9 self-organizing map trained on an optimal
solution path of 31 steps, shown top left mapped to the codomain.

method A∗ A? A!
freq. 1 2 3 4 1 2 3 4 1 2 3 4
mean 648 414 269 4780 3290 1147 903 5245 562 600 1006 4544
ratio 0.11 0.07 0.04 0.78 0.31 0.11 0.09 0.50 0.08 0.09 0.15 0.68
std 476 363 235 525 1345 559 327 716 233 254 372 656

Table 4.1: State visits for A∗, A? and A! on 8-puzzle [8 6 7 2 5 4 3 0 1]. The
table gives the mean, ratio and standard deviation of state visit frequencies from
ten iterations of A∗ on four agents with Manhattan heuristic.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 64

Figures 4.9 and 4.10 together with the respective tables 4.1 and 4.2 represent
two n-puzzle SOM systems – one featuring the running example starting from state
s1, the other one being an average difficulty 15-puzzle9. The selected 8-puzzle is
one of the two hardest 8-puzzles, with an optimal solution of 31 moves, while the
15-puzzle has an optimal solution of 54 moves.

In both cases, a SOM is trained on the solution path and the states – including
repeated visits by multiple agents – are mapped to a two dimensional grid. Fig-
ures 4.9a and 4.10a show how the solution path itself maps into the output space.
The SOM learns an ANN that gives a somewhat homogeneous cover of the grid in
Figure 4.9a, but much less so in Figure 4.10a. This might reflect the relative diffi-
culty of the instances, with harder instances covering more area: a hard 8-puzzle
leads to a near-complete 8×8 SOM cover, while an average 15-puzzle gives only a
half-cover over a 16×16 SOM. While any insight on search space coverage might
be very useful in improving parallel search diversity, we do not pursue this idea
further here.

The algorithm heatmaps represent the average of ten runs with explored state
space logged in each separately. All runs were done with four agents and using the
Manhattan heuristic. Each cell represents a SOM “bucket” to which nodes from
the puzzle domain get mapped. The color scheme scale is shared between the
three algorithms, revealing very similar patterns and mostly intensity differences.
The algorithms go through states in the same neighborhood, with some algorithms
opening more nodes, others less in a given neighborhood.

Notably, for the instance in Figure 4.9 we find A∗ to perform much like A! , with
A? lagging behind – a fact also reflected in Table 4.1. The table gives means and
standard deviations for each state visit frequency group, e.g., for A∗, on average
about 4780 (∼ 80%) nodes were visited by each one of the four agents, the standard
deviation over ten iterations being 525. In the figure we see A? lighting up more
than the competition, i.e., more nodes are getting opened, which is also apparent
from the mean table row.

The instance in Figure 4.9 is not very hard, even with the lackluster Manhattan
heuristic, and serves mostly as an introduction to the visualization: the power of
A! – and A? – does not manifest yet. However, Table 4.1 suggests some additional
considerations. First, running four A∗ agents does not yield four times the same
logs, but one complete and three a bit short. This is due to the fast termination
policy in which the first one to reach a goal ends the overall search. Also, scheduling
and the runtime environment make some of the agents proceed more slowly than
others. This results in a kind of a coexistence overhead, with only once, twice or
thrice opened nodes being visible also in the A∗ ratio row.

Second, even adjusting for the coexistence overhead, A? clearly opens more
9Hardest 15-puzzles have an optimal solution of 80 moves.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 65

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

1

2

(a) Solution path

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(b) Vanilla A∗

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(c) Random A?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(d) Cooperative A!

Figure 4.10: 16×16 SOM visualization of A∗, A? and A! on 54-optimal 15-puzzle
[12 8 6 3 13 4 2 7 0 9 15 5 14 10 11 1].

method A∗ A? A!
freq. 1 2 3 4 1 2 3 4 1 2 3 4
mean 661 862 346 158124 91459 32347 13256 76659 40168 8406 4253 75356
ratio 0.00 0.01 0.00 0.99 0.43 0.15 0.06 0.36 0.31 0.07 0.03 0.59
std 352 1573 379 1420 27768 27092 14508 4702 29408 8212 1800 1040

Table 4.2: State visits for A∗, A? and A! on 15-puzzle [12 8 6 3 13 4 2 7 0 9
15 5 14 10 11 1]. The table gives the mean, ratio and standard deviation of
state visit frequencies from ten iterations of A∗ on four agents with a 6-6-3 disjoint
pattern database heuristic.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 66

unique nodes – at least in this instance – than the other two methods. A? opens
more nodes overall as well, but the ratios for singleton node visits and all four
agents visiting differ from the other methods. Finally, the standard deviation row
reflects the volatile nature of A? and also the stability of A!. A! performs in a
much more consistent manner than A?.

Figure 4.10 presents a larger 15× 15 board for the larger 15-puzzle and the
benefits from cooperation make an appearance. The heuristic is a pattern database
this time. The instance has an optimal path of 54 steps, spread out in Figure 4.10a
to the left and upper left side of the board by the SOM. This time the uninformed
A∗ shows its true color, as the four agents travel much of the same search space,
yielding ∼ 99% all-repeat ratio in Table 4.2 with proportionally low deviation.

A? overcomes A∗ this time, A! doing better still. The mean row in the table
shows how both A? and A! have plenty of unique nodes, with A! showing more
variance in the low frequencies on the std row. The overall opened node median
for these runs was around 126000 for A? and about 92000 for A!, but means don’t
fully reflect this because of the great variance between runs. That the explicitly
randomized A? behaves erratically is not that surprising, but that the implicit
randomness inherent in A! produces such volatility is unexpected.

This is where the visualization gives an idea of what is going on: A! seems to
tread similar paths as A∗ and A?, but as the peaks appear noticeably dimmer,
it spends less resources in exploring a given neighborhood. Intuitively, this could
mean that the secondary heuristic is working as intended, directing the search
beyond random browsing, but more data is needed to really back this claim.

While these two discussed instances lead to no conclusive results, the path
diversity concept seems to work well together with fundamental data exploration
measures mean, ratio and standard deviation. Visualizing the search space with a
self-organizing map gives a useful new perspective on the nature of the algorithms,
and helps highlight the similarities and differences between the three methods.

4.3.4 Hybrid performance
The diminishing returns from adding agents to any of the methods explored here
is due to search overhead: new search workers mostly tread on paths that have
already been explored by others. Path diversity is essential for A! in the sense that
the secondary heuristic does not reach its full potential without sufficiently spread
out search agents. There are many ways to tackle the issue of search overhead, such
a various partitioning schemes, but in this section we consider a simple modification
of the A! algorithm, that has the potential to increase exploration diversity.

From Table 4.2 we can see that, beyond A∗ taking search overhead to an
extreme, A? tends to explore a more diverse set of states than A! – for better or
worse. For the instance in question only a third of the states visited by a four

CHAPTER 4. SOLVING N -PUZZLES WITH A! 67

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
 0

10000

20000

30000

40000

50000

60000

70000

80000

90000

40

42

44

46

48

50

52

15−puzzle runs, HYBRID mode, even length groups 40−52, 4 agents, 5x, PDB heuristic.

Cutoff threshold p for A": Pr[A!] = p, Pr[A?] = 1−p.

V
is

it
e
d

 v
e
rt

ic
e

s
 f

o
r

w
in

n
in

g
 a

g
e

n
t,

 m
e
a

n
s
 b

y
 g

ro
u
p

Figure 4.11: Hybrid A′′ performance over multiple p-thresholds. Three iterations
of 15-puzzle instances in the 45–54 range grouped by optimal path length. A! like-
lihood over A? grows with p to the right. The downward trending slopes suggest
that adding some A? elements into A! does not improve the overall performance.

CHAPTER 4. SOLVING N -PUZZLES WITH A! 68

agent A! are unique, but for A? closer to a half of all states visited are unique, and
there are about twice as many overall.

Ideally, we would like to have the focused search performance of A!, but also
more diversity in the spirit of A? in one algorithm. As the two methods differ only
in their selection policy, combining the two into a single approach is straightfor-
ward: we select between the two at random. This notion is captured in Algorithm 8
in Section 3.3.4, denoted A′′. Randomly drawn values falling under threshold p
give a round of A!, with A? being used otherwise.

Figure 4.11 shows how A′′ performs on some medium sized 15-puzzle instances.
Grouped again by optimal lengths, we see downward trends in the visited vertex
count group averages for the winning agent of four as the cutoff threshold p is raised
evenly from 1% to 97%. From left to right, the proportion of A! to A? increases,
and no clear, consistent peaks emerge. The hybrid A′′ does not represent an
improvement: overall best results are obtained through unassisted A!.

While A! could likely benefit from more search diversification, augmenting the
search with A? does not seem to be the right way to go about this. The secondary
heuristic in A! appears to function in way that allows the algorithm to skip past
the very states that A? is subject to waste time on.

4.4 Discussion
The n-puzzle experiments show that the cooperative A! algorithm outperforms
both vanilla A∗ and the non-cooperative random parallel search A? in this problem
context. A∗ is driven by a heuristic and expands the search in an orderly fashion
and broadly in all directions, in a sense being forgetful about search history; A!,
in contrast, prefers depth and emphasizes progress and search momentum.

A? is forgetful as well, but through randomization and parallelism, the search is
less orderly and the agents can stumble on the right path faster than in systematic
browsing, given enough agents. A! embraces concurrency and the parallel agents
cooperate in focusing the search effort in areas that others have found promising.
The secondary heuristic in A! serves as a global compass that augments the search
effort, when the primary heuristic fails to disambiguate between candidates.

The experiments indicate that the nondeterministic cooperation emerging from
asynchronous message exchange is beneficial at least for enabling the use of the
secondary heuristic. The performance gains in A! might be explained by the active
pursuit of search depth, information exchange having only a marginal impact, but
on the other hand the cooperation mechanism does clearly influence the search.
Without a shared, global sense of direction, the impact of any candidate ranking
scheme is bound to be worthless: it is not enough to just go deep anywhere.

With more agents, the method was shown to work better, but with this simple

CHAPTER 4. SOLVING N -PUZZLES WITH A! 69

implementation, search overhead appeared to be an issue. The solver is not com-
petitive, but then again that was never really a goal. Adding some randomization
to A! in A′′ did not help, and far more robust diversity increasing mechanisms are
necessary for further scalability.

For the n-puzzle problems, A! demonstrated some extra sensitivity to heuristic
improvement A∗. The reason for this is not clear, but it is likely a fundamental
factor in the method’s overall performance – be it related to depth-first orientation
or path diversity. Finally, the SOM visualization proved thought-provoking, but
somewhat low-fidelity, and so a more appropriate visualization could help examine
how search space exploration and cooperative mechanisms really go together.

Chapter 5

Related work

In this chapter we provide some additional background and references to research in
the areas related to cooperative heuristic search, parallel A∗, general concurrency
and multi-agent cooperation.

5.1 Cooperative search
The idea of cooperative search is not a new one, but like parallel computing in gen-
eral, it has somewhat fallen out of favor. Cooperative search enters the computing
research lexicon in the late 1980s and early 1990s, a period of reduced funding and
interest in AI technology known as the “AI winter” [115], when some researchers
in the AI community started to think about parallel search in a new way.1

Parallel computing has a long history, and the benefit from running several
independent search methods in parallel was well established early on, but first re-
sults in the constraint satisfaction context [26] suggested that keeping the methods
isolated might not always be the best approach [63]. Instead of using portfolios
of independent methods and relying on method variance alone, parallel search
could be built around methods that actively pursue cooperation. More beneficial
variance could be gained through the exchange and reuse of information gathered
during the execution [63].

It had been previously observed that for many NP-hard problems, there is a
distinct transition point at which problem instances begin to exhibit the kind of
complexity and challenge that overcomes all algorithmic approaches [25, 71, 107,
130, 131]. These phase transition regions [60, 64, 107] – in analogy with various
“energy barriers” found in physical processes – were characterized by high solution

1Curiously, the earliest references to cooperative search refer to collaborative communities of
people in pursuit of a common goal, and, later, to cooperation between man and machine.

70

CHAPTER 5. RELATED WORK 71

cost variance, and featured structures with large partial solutions that prevented
early pruning by many kinds of heuristics [63].2

Clearwater, Hubermann and Hogg [26] presented results from constraint sat-
isfaction search, where cooperative methods dominated non-cooperative ones for
precisely these hard instances with many large partial solutions. Cooperation was
found to be beneficial even in the case that most of the exchanged information
turned out to be misleading [63].

Hogg and Williams [63] consider a cooperative mixture of two different search
methods and apply this combination to graph coloring. The first method is a com-
plete, depth-first backtracking search, while the other one begins with randomized
initial configurations and uses heuristic repair to produce solutions. The methods
exchange hints, partial solutions, with the help of a blackboard and variability
is achieved through explicit, uniform randomness. Huberman [62] and Clearwa-
ter [26] helped develop these ideas. Kornfeld [81] was an early inspiration, already
talking about the potential of concurrency in heuristic search.

The view to cooperation that Hogg and Williams present is of a master-slave
kind, with a dominant uninformed search being augmented with a local optimiza-
tion routine. Many of their ideas are applicable to the approach presented in
this work, but we focus on cooperation that is more egalitarian in nature and
specifically to cooperation that is realized through informed search and heuristic
interaction. Instead of hints that are used to construct explicit candidates and
establish areas of interest in the search space, the messaging in this work – while
also very primitive – is more involved with building a sense of global direction on
top of locally myopic heuristic search.

From the late 1990s onward, Michel Toulouse together with Theodore Crainic
and collaborators began work on developing a theory of algorithmic cooperation
and search in particular, beginning with parallel metaheuristics and culminating
in the the taxonomy work presented in Sections 2.5 and 2.6 [30, 32, 125–127].

The cooperation results they present are inspired by tabu search, local search
with a memory; scatter search, featuring search diversification (extrapolation) and
intensification (interpolation) phases; multi-level search, where agents use different
data sets and operate at a different level of abstraction; and genetic algorithms,
colony methods and other bio-inspired approaches in evolutionary computation.
Engelbrecht draws much of this work together in his book on computational intel-
ligence [38]. Alba et al. [3, 4] offer extensive surveys on parallel metaheuristics.

Toulouse and Crainic posit that cooperation in parallel search stems from shar-
ing gathered information among several sequential search programs, but emphasize
that this is not mere hardware acceleration: the search patterns change completely

2Combinatorial search is a major driver behind interest in quantum computing and phase
transitions have been theorized to exist also in that computational setting [61].

CHAPTER 5. RELATED WORK 72

in cooperation [125]. There is a deeper system-wide process taking place during co-
operative search, manifesting as ripple effects, self-organization, and stabilization
towards attractors, but being poorly understood, it is hard to make use of.

The work in this thesis is heavily inspired by all of these ideas. The taxonomy
of Toulouse and Crainic was used to derive a simple form of cooperation between
agents and the emergent cooperation ideas are certainly at the heart of concurrent
interaction. The techniques explored in computational intelligence, such as tabu
memory and more extensively shared global state, could very well be applied to
A!, but much of the previously described work is based on local search rather than
pathfinding. It seems that these ideas have been explored less in informed parallel
search of this kind.

The search for a theory of the emergent properties of cooperation has driven
research on cooperative search to the fringes of computer science, where inspiration
is drawn from nature, biology and sociology [31, 96, 126] as well as risk economics
and game theory [88, 100].

More formal treatments of cooperation have also been proposed. Aldous and
Vazirani [5] establish the family of “Go with the winners” cooperation algorithms,
based on randomized particle set optimization, and offer an analysis of the key
properties. Toulouse, Crainic and Sansó [126] focus on systemic control depen-
dencies underlying cooperation. More recently Chazelle [24] has provided a solid
footing for what he calls natural algorithms, a domain-independent language for
describing complex interaction systems found in life sciences.

The work of Ouelhadj and Petrovic [98] and Barbucha [11] is probably closest
to the work presented in this thesis. Ouelhadj and Petrovic build an agent-based
hyper-heuristic framework in which agents can share best solutions of low-level
heuristics and cooperate asynchronously, but while the approach is general they,
too, are focused on local search. Barbucha also presents cooperating agents search-
ing together for a solution to the vehicle routing problem, the focus being on
multi-agent learning and evaluating aspects of communication. The same ideas
are pursued in this work, but using different means and in a different context.

One reason for which cooperation is perhaps explored less in optimal algorithms
of the kind that extend search paths from the root using the same heuristic in-
formation, is that A∗ is optimally efficient for any given consistent heuristic [115].
“No other optimal algorithm is guaranteed to expand fewer nodes than A∗ ”, Rus-
sell and Norvig note, “(except possibly through tie-breaking among nodes with [a
cost equal to the optimal path]).” This, of course, is exactly what A! does.

Next, we’ll review some parallel A∗ ideas and see to what extent cooperation
has made an appearance there.

CHAPTER 5. RELATED WORK 73

5.2 Parallel A∗

To continue the brief review of A∗ topics started in Section 3.1.2, we now turn
to parallel A∗. Russell and Norvig [115] give a good overview of vanilla A∗, but
choose to not cover parallel search algorithms at length, claiming that it requires
a lengthy discussion of parallel architectures. They note, however, that parallel
search became a popular topic in the 1990s in both AI and theoretical computer
science, and that the new multi-core and cluster computing era has brought it to
the fore again.

First reports on the parallelization efforts of heuristic search are from the 1980s.
Kumar, Ramesh and Rao [82] present a summary of the early results, featuring
both centralized and distributed parallelism and various flavors of memory effi-
ciency mechanisms. They make a note that parallel formulations primarily differ
in the data structures they employ.

Powley and Korf [106] give a single-agent parallel window search formulation of
IDA∗ augmented with a global node ordering scheme. This is close to the ranking
secondary heuristic idea employed in A!, but the approach simply tracks frontier
nodes ands sorts them by g(u)-value adding momentum, but in a blind fashion.

Knight [73] presents a reactive agent oriented version of real-time-A∗, with
cooperative and noncooperative parallelism. Mahanti and Daniels [86] give a
straightforward SIMD-parallel version of IDA∗. Grama and Kumar [48] give a
comprehensive survey of basic parallel search algorithms, including studies on
backtracking, A∗, IDA∗, branch-and-bound, and dynamic programming methods.
They also address issues such as load balancing, work-stealing, communication
cost, scalability and speedup anomalies.

All of this research from close to two decades ago is worth exploring, when
developing parallel search for specific applications, A! being no exception. Re-
markably, many of the questions asked back then are still relevant today, with
new applications and hardware only accentuating issues like load balancing.

Load balancing through hashing was an important development in parallel
A∗, and could well be a good candidate to improve diversity in A!. Evett et al.
present hashing-based Parallel Retraction A∗ (PRA∗) [41], an influential massively
SIMD-parallel A∗ variant that makes good use of parallel computing resources and
remains optimal for admissible heuristics.

Mahapatra and Dutt [87] use hashing extensively in load balancing and search-
space partitioning. Later, Kishimoto et al. [72] picked up hashing for use in HDA∗,
hash distributed parallel A∗, that scales to thousands of cores and terabytes of
RAM. They emphasize simplicity in their approach and draw attention again to
the notorious difficulty of parallel programming.

Another successful parallelization of A∗, TDS, is focused on efficient state shar-

CHAPTER 5. RELATED WORK 74

ing with distributed memory, and is based on transposition tables [113]. Further
studies in search space partitioning have lead to to duplicate detection mecha-
nisms [20] and external memory optimized distributed algorithms [133].

Without search space partitioning, parallelism can be achieved through paral-
lelizing computation on the processing of individual nodes in a heavy graph, as
was the case with the chess machine Deep Blue [21]. Algorithm portfolios and hy-
brids are another easy way to exploit parallelism, an example being the ManySAT
solver [51]. Machine learning methods have been successfully applied to the dis-
covery of well performing parallel configurations [27].

Classical planning tasks make good benchmarks and are often featured in par-
allel A∗ papers to give the methods credibility beyond puzzles [20, 55, 72]. Multi-
agent formulations are sometimes given [75, 95], but cooperation effects do not
appear to be studied directly. Information exchange, mostly considered from a
search space partitioning and distributed load balancing angle, is not really con-
sidered from the point of view taken in this thesis. Most of A∗ parallelizations are
deterministic and the rest probabilistic.

On the heuristics side, much of the efforts in parallel A∗ research relies on
domain-independent methods rather than on improving the heuristic functions
through parallel execution. It seems that the problem-specific heuristics research
and A∗ parallelization efforts do not currently overlap much. The cooperative
secondary heuristic idea of A! is related to the wealth of approaches explored in
the parallel A∗ literature, but seems to not have been explicitly studied before.

Chapter 6

Conclusion

The goal of this thesis was to explore algorithmic cooperation with software agents
in the context of heuristic search. The motivation behind this work is in making
good use of multi-core computing hardware, and stems from the long-standing
pursuit of parallel processing power. Specifically, this research focused on the
effects of nondeterministic concurrency and the cooperation that emerges from
asynchronous knowledge exchange between search agents.

The thesis has three main offerings. First – and foremost – we seek to es-
tablish that unconstrained cooperation, as a general purpose algorithmic idea, is
worth pursuing in parallel computing. Second, we present a prototype cooperative
heuristic search algorithm, A!, as a straightforward parallelization of the heuristic
single-source shortest path algorithm A∗. Third, we present an experimental study
of A! in the standard benchmark n-puzzle toy problem context.

The hardware-oriented parallel computing tradition continues to deliver pro-
cessing performance, but the software side is lagging behind. While peak perfor-
mance is hard to achieve without low-level optimization, a higher level view is
necessary for the design of everyday parallel software. The critical mainstream
adoption of parallel programming requires abstractions that enable intuitive rea-
soning about systems with concurrently interacting parts.

Cooperation is the decisive difference between systems with many parts and
systems that are more than the sum of their parts. Yet, cooperation is barely
present in software today. Parallel programs often feature some internal communi-
cation, but this has traditionally been heavily confined and controlled: predictabil-
ity and independence are favored over free interaction. Correctness is muddled up
with performance. Some of this is dictated by the hardware reality, but this thesis
argues that there is room to explore new parallel programming ideas. Cooperation
is here promoted as one such idea.

The A! algorithm described in Chapter 3 is a cooperative search algorithm that
uses two heuristic functions, one individual and one collective, to explore search

75

CHAPTER 6. CONCLUSION 76

space in a collaborative way. It is based on nondeterministic concurrency and
implicit randomness rather than explicit stochastic processes: instead of proba-
bilities, the method relies on unpredictable event interleaving. Concurrency has
a notorious reputation in shared-state parallel computing, so making use of it in
this is a somewhat radical idea and worth exploring some more.

A! is a parallelization of A∗ inspired by multi-agent systems. The search work-
ers in A! run distinct A∗ -like searches and share information about their progress.
The secondary heuristic ranks nodes in the search frontier based on their distance
to the globally best node. This is simple cooperation that is constructed on top
of A∗, meaning that most of the A∗ improvements should be compatible without
issue. The use of the secondary heuristic is independent of the primary one and
only used to differentiate: A! retains the optimality of A∗.

The experimental results outlined in Chapter 4 indicate that A! performs well in
finding optimal solutions to the n-puzzle. Specifically, A! explores less of the legal
move search space than both vanilla A∗ and a random differentiation variant of A∗.
The performance of A! clearly improves with more search agents, but the returns
are diminishing. A! is sensitive to heuristic improvement, but constrained by search
overhead from limited path diversity. The secondary heuristic in A! appears to
work locally as intended, with no gains being observed from hybridization with
random selection.

While experimental success in a single problem does not merit much claim for
achievement, this study at least suggests that the ideas underlying A! – coopera-
tion and implicit randomness – are worth pursuing further. Compared to isolated
parallelism, nondeterministic concurrency is applied to great effect in A!. Asyn-
chronous exchange of information, the ripple effects of interaction, can be used to
enhance and augment parallel execution.

The extent to which A! performance can be attributed to cooperation is unclear,
but the experiments indicate that there is more than just a momentum effect
at play: a depth-first emphasis on equal-value nodes is less useful without the
direction of the secondary heuristic. A more detailed study of these factors could
also help understand the nature of implicit randomness as it appears here.

If the concurrent interaction in A! would be linearized in a deterministic or
an explicitly randomized way, one would likely see performance comparable to
the results presented in this work. On the other hand the secondary heuristic is
inherently dynamic, so imposing some specific event ordering might result in even
less diversity. There currently is no good theory about algorithmic cooperation.

The work presented in this thesis could be continued in a number of ways. First
of all, the A! algorithm should be validated in other search contexts, preferably
using standard tools and benchmarks, such as the Fast Downward planner [54], to
enable comparisons with recent work in the community [72, 94]. In current shape,

CHAPTER 6. CONCLUSION 77

the n-puzzle A! is not competitive, but embedding these concurrent interaction
ideas into a modern A∗ parallelization might give interesting results.

A! would likely benefit a great deal from a mechanism that diversifies the search
effort more. Hybridization with a simple random selection did not appear to help,
but a more elaborate diversification scheme might make search space coverage less
redundant, bringing total explored node count and execution time down. In a
similar vein exploring problem-specific path diversity visualizations further could
help discover some structural properties in the target problems, which then might
be useful in developing diversification methods.

In the implementation details, a more efficient heap data structure, optimized
for top-k peek access, could have a visible impact on the individual node processing
rate. The shared memory structure could also be optimized beyond the current all-
independent configuration. Finally, the current communication constructs could
be improved to minimize redundant traffic and increase shared information quality.

Overall, nondeterministic concurrency has here been shown to work well in
the cooperative heuristic search setting and exploring these ideas in other parallel
computing contexts is a natural next step. There is real value in cooperation and
algorithms are no exception.

Bibliography

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. Technical report, MIT AI Laboratory, June 1985.

[2] Selim G. Akl. Parallel Computation: Models and Methods. Prentice Hall,
1996.

[3] Enrique Alba, editor. Parallel Metaheuristics. John Wiley & Sons, 2005.

[4] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel Metaheuris-
tics: Recent Advances and New Trends. International Transactions in Op-
erational Research, 20(1):1–48, 2013.

[5] David Aldous and Umesh Vazirani. ’Go with the winners’ algorithms. In
Proc. of the 35th Annual Symposium on Foundations of Computer Science
(FOCS ’94), pages 492–501, November 1994.

[6] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proc. of the 1967 AFIPS Spring
Joint Computer Conference, pages 483–485, April 1967.

[7] Alejandro Arbelaez and Youssef Hamadi. Improving Parallel Local Search for
SAT. In Proc. of the 5th Intl. Conf. on Learning and Intelligent Optimization
(LION ’05), pages 46–60, January 2011.

[8] Michael Armbrust, Ion Stoica, Matei Zaharia, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, and Ariel Rabkin. A View of Cloud Computing. Communications of
the ACM, 53(4):50, April 2010.

[9] Krste Asanovic, John Wawrzynek, David Wessel, Katherine Yelick, Rastislav
Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz,
Nelson Morgan, David Patterson, and Koushik Sen. A View of the Parallel
Computing Landscape. Communications of the ACM, 52(10):56, October
2009.

78

BIBLIOGRAPHY 79

[10] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. A Survey on Reactive Programming.
ACM Computing Surveys, 45(4):1–34, August 2013.

[11] Dariusz Barbucha. Search Modes for the Cooperative Multi-agent System
Solving the Vehicle Routing Problem. Neurocomputing, 88:13–23, July 2012.

[12] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J.
Gutjahr. A Survey on Metaheuristics for Stochastic Combinatorial Opti-
mization. Natural Computing, 8(2):239–287, 2009.

[13] Guy E. Blelloch and Bruce M. Maggs. Parallel Algorithms. In Algorithms
and Theory of Computation Handbook, chapter 25. Chapman & Hall/CRC,
2010.

[14] Pradip Bose. Is Dark Silicon Real? Communications of the ACM, 56(2):92,
February 2013.

[15] Sandy Brand and Rafael Bidarra. Parallel Ripple Search - Scalable and
Efficient Pathfinding for Multi-core Architectures. In Proc. of the 4th Intl.
Conf. on Motion in Games (MIG ’11), pages 290–303, 2011.

[16] Gerth S. Brodal. Worst-Case Efficient Priority Queues. In Proc. of the 7th
ACM-SIAM Symposium on Discrete Algorithms (SODA ’96), pages 52–58,
January 1996.

[17] Gerth S. Brodal and Chris Okasaki. Optimal Purely Functional Priority
Queues. Journal of Functional Programming, 6(6):839–857, 1996.

[18] Peter A. Buhr and Ashif S. Harji. Concurrent Urban Legends. Concurrency
and Computation: Practice and Experience, 17(9):1133–1172, August 2005.

[19] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A Sur-
vey of the State of the Art. Journal of the Operational Research Society,
64(12):1695–1724, December 2013.

[20] Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. Best-First
Heuristic Search for Multicore Machines. Journal of Artificial Intelligence
Research, 39:689–743, 2010.

[21] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. Deep Blue.
Artificial Intelligence, 134(1-2):57–83, January 2002.

BIBLIOGRAPHY 80

[22] Anthony M. Castaldo and R. Clint Whaley. Scaling LAPACK Panel Opera-
tions Using Parallel Cache Assignment. In Proc. of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’10), pages 223–232, 2010.

[23] K. Mani Chandy and Jayadev Misra. Parallel Program Design - A Founda-
tion. Addison-Wesley, 1989.

[24] Bernard Chazelle. Natural Algorithms and Influence Systems. Communica-
tions of the ACM, 55(12):101–110, December 2012.

[25] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really
Hard Problems Are. In Proc. of the 12th Intl. Joint Conference on Artificial
Intelligence (IJCAI ’91), volume 1, pages 331–337, August 1991.

[26] Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg. Cooperative
Solution of Constraint Satisfaction Problems. Science, 254(5035):1181–3,
November 1991.

[27] Diane J. Cook and R. Craig Varnell. Adaptive Parallel Iterative Deepening
Search. Journal of Artificial Intelligence Research, 9(1):139–166, August
1998.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd ed. The MIT Press, 2009.

[29] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Dis-
tributed Systems: Concepts and Design, 5th ed. Addison-Wesley, 2012.

[30] Teodor G. Crainic and Nourredine Hail. Parallel Meta-Heuristics Applica-
tions. In Parallel Metaheuristics, chapter 19. John Wiley and Sons, 2005.

[31] Teodor G. Crainic and Michel Toulouse. Explicit and Emergent Cooperation
Schemes for Search Algorithms. In Proc. of the 2nd Intl. Conf. on Learning
and Intelligent Optimization (LION ’07), pages 95–109, 2008.

[32] Teodor G. Crainic and Michel Toulouse. Parallel Meta-heuristics. In Hand-
book of Metaheuristics, chapter 17, pages 497–541. Springer, 2010.

[33] Joseph Culberson and Jonathan Schaeffer. Searching with Pattern
Databases. In Proc. of the 11th Biennial Conference of the Canadian Society
for Computational Studies of Intelligence on Advances in Artificial Intelli-
gence (Canadian AI ’96), pages 402–416, 1996.

BIBLIOGRAPHY 81

[34] Joseph Culberson and Jonathan Schaeffer. Pattern Databases. Computa-
tional Intelligence, 14(3):318–334, 1998.

[35] Edsger W. Dijkstra. A Note on Two Problems In Connexion With Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[36] Jim. E. Doran and Donald Michie. Experiments with the Graph Traverser.
Proceedings of the Royal Society, 294:235–259, 1966.

[37] Michel Dubois, Murali Annavaram, and Per Stenström. Parallel Computer
Organization and Design. Cambridge University Press, 2012.

[38] Andries P. Engelbrecht. Computational Intelligence: An Introduction. Wiley
Publishing, December 2007.

[39] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Power Challenges May End the Multicore Era.
Communications of the ACM, 56(2):93, February 2013.

[40] Patrick T. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The Many Faces of Publish/Subscribe. ACM Computing Sur-
veys, 35(2):114–131, June 2003.

[41] Matthew Evett, James Hendler, Ambuj Mahanti, and Dana Nau. PRA*:
Massively Parallel Heuristic Search. Journal of Parallel and Distributed
Computing, 25(2):133–143, 1995.

[42] Henri Farreny. Completeness and Admissibility for General Heuristic Search
Algorithms - A Theoretical Study: Basic Concepts and Proofs. Journal of
Heuristics, 5(3):353–376, 1999.

[43] Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive Pattern Database
Heuristics. Journal of Artificial Intelligence Research, 22:279–318, 2004.

[44] Michael J. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, 1972.

[45] Michael L. Fredman and Robert E. Tarjan. Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms. Journal of the ACM,
34(3):596–615, July 1987.

[46] Anwar Ghuloum. Viewpoint: Face the Inevitable, Embrace Parallelism.
Communications of the ACM, 52(9):36, September 2009.

BIBLIOGRAPHY 82

[47] Gregory Goth. Entering a Parallel Universe. Communications of the ACM,
52(9):15, September 2009.

[48] Ananth Grama and Vipin Kumar. Parallel Search Algorithms for Dis-
crete Optimization Problems. ORSA Journal on Computing, 7(4):365–385,
November 1995.

[49] Ananth Y. Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: Measur-
ing the Scalability of Parallel Algorithms and Architectures. IEEE Parallel
& Distributed Technology: Systems & Applications, 1(3):12–21, August 1993.

[50] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the
ACM, 31(5):532–533, May 1988.

[51] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. ManySAT: A Parallel
SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation,
6(4):245–262, 2009.

[52] Othar Hansson, Andrew Mayer, and Moti Yung. Criticizing Solutions to Re-
laxed Models Yields Powerful Admissible Heuristics. Information Sciences,
63(3):207–227, September 1992.

[53] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[54] Malte Helmert. The Fast Downward Planning System. Journal of Artificial
Intelligence Research, 26(1):191–246, July 2006.

[55] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible Abstraction
Heuristics for Optimal Sequential Planning. In Proc. of the 17th Intl. Conf.
on Automated Planning and Scheduling (ICAPS ’07), pages 176–183, 2007.

[56] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[57] Rich Hickey. Values and Change - Clojure’s Approach to Identity and State.
Technical report, Clojure.org, 2012.

[58] Pieter Hintjens, editor. ØMQ - The Guide. iMatix Corporation and collab-
orators, 2014.

[59] C. A. R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666–677, August 1978.

BIBLIOGRAPHY 83

[60] Tad Hogg. Phase Transitions and the Search Problem. Artificial Intelligence,
81(1-2):1–15, March 1996.

[61] Tad Hogg. Quantum Computing and Phase Transitions in Combinatorial
Search. Journal of Artificial Intelligence Research, 4(1):91–128, January
1996.

[62] Tad Hogg and Bernardo A. Huberman. Better Than the Best: The Power
of Cooperation. In 1992 Lectures in Complex Systems, volume V, pages
165–184. Addison-Wesley, 1993.

[63] Tad Hogg and Colin P. Williams. Solving the Really Hard Problems with
Cooperative Search. In Proc. of the 11th National Conference on Artificial
Intelligence (AAAI ’93), pages 231–236, July 1993.

[64] Bernardo A. Huberman and Tad Hogg. Phase Transitions in Artificial Intel-
ligence Systems. Artificial Intelligence, 33(2):155–171, October 1987.

[65] Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An Economics
Approach to Hard Computational Problems. Science, 275(5296):51–54, Jan-
uary 1997.

[66] Shams M. Imam and Vivek Sarkar. Integrating Task Parallelism with Actors.
ACM SIGPLAN Notices, 47(10):753, November 2012.

[67] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Learning Heuris-
tic Functions for Large State Spaces. Artificial Intelligence, 175(16-17):2075–
2098, October 2011.

[68] Joseph JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[69] Donald B. Johnson. Priority Queues with Update and Finding Minimum
Spanning Trees. Information Processing Letters, 4(3):53–57, December 1975.

[70] William W. Johnson and William E. Story. Notes on the ”15” Puzzle. Amer-
ican Journal of Mathematics, 2(4):397–404, 1879.

[71] Richard M. Karp and Judea Pearl. Searching For an Optimal Path in a Tree
With Random Costs. Artificial Intelligence, 21(1-2):99–116, 1983.

[72] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Evaluation of a Sim-
ple, Scalable, Parallel Best-First Search Strategy. Artificial Intelligence,
195(0):222–248, February 2013.

BIBLIOGRAPHY 84

[73] Kevin Knight. Are Many Reactive Agents Better Than A Few Deliberative
Ones? In Proc. of the 13th Intl. Joint Conference on Artifical Intelligence
(IJCAI ’93), volume 1, pages 432–437, 1993.

[74] Donald E. Knuth. The Art of Computer Programming, Volume I: Funda-
mental Algorithms, 2nd ed. Addison-Wesley, 1973.

[75] Sven Koenig. Agent-Centered Search. AI Magazine, 22(4):109–131, October
2001.

[76] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong Planning A*.
Artificial Intelligence, 155(1-2):93–146, May 2004.

[77] Teuvo Kohonen. Self-Organizing Maps. Springer, 2001.

[78] Richard E. Korf. Depth-First Iterative-Deepening: An optimal Admissible
Tree Search. Artificial Intelligence, 27(1):97–109, September 1985.

[79] Richard E. Korf. Recent Progress in the Design and Analysis of Admissi-
ble Heuristic Functions. In Proc. of the 4th International Symposium on
Abstraction, Reformulation, and Approximation (SARA ’00), pages 45–55,
2000.

[80] Richard E. Korf and Ariel Felner. Disjoint Pattern Database Heuristics.
Artificial Intelligence, 134(1-2):9–22, January 2002.

[81] William A. Kornfeld. The Use of Parallelism to Implement a Heuristic
Search. In Proc. of the 7th Intl. Joint Conference on Artificial Intelligence
(IJCAI ’81), volume 1, pages 575–580, 1981.

[82] Vipin Kumar, K. Ramesh, and V. Nageshwara Rao. Parallel Best-First
Search of State-Space Graphs: A Summary of Results. In Proc. of the 7th
National Conference on Artificial Intelligence (AAAI ’88), pages 122–127,
1988.

[83] Alexandre Le Bouthillier, Teodor G. Crainic, and Peter Kropf. A Guided
Cooperative Search for the Vehicle Routing Problem with Time Windows.
IEEE Intelligent Systems, 20(4):36–42, August 2005.

[84] Edward A. Lee. The Problem with Threads. IEEE Computer, 39(5):33–42,
May 2006.

[85] John A. Lee and Michel Verleysen. Nonlinear Dimensionality Reduction.
Springer, 2007.

BIBLIOGRAPHY 85

[86] Ambuj Mahanti and Charles J. Daniels. A SIMD Approach to Parallel
Heuristic Search. Artificial Intelligence, 60(2):243–282, April 1993.

[87] Nihar R. Mahapatra and Shantanu Dutt. Scalable Global and Local Hash-
ing Strategies for Duplicate Pruning in Parallel A* Graph Search. IEEE
Transactions on Parallel and Distributed Systems, 8(7):738–756, July 1997.

[88] Efrat Manisterski, David Sarne, and Sarit Kraus. Cooperative Search with
Concurrent Interactions. Journal of Artificial Intelligence Research, 32:1–36,
2008.

[89] Bruce Martin. Concurrent Programming vs. Concurrency Control: Shared
Events or Shared Data. ACM SIGPLAN Notices, 24(4):142–144, April 1989.

[90] Paul E. McKenney. Beyond Expert-Only Parallel Programming? In Proc.
of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and
Manycore Scalability (RACES ’12), pages 25–31, October 2012.

[91] Paul E. McKenney. Is Parallel Programming Hard, And, If So, What Can
You Do About It? The Linux Kernel Organization, 2014.

[92] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, December 1995.

[93] Stephen A. Neuendorffer. Agent-Oriented Metaprogramming. PhD thesis,
University of California, Berkeley, 2004.

[94] Raz Nissim and Ronen Brafman. Multi-Agent A* For Parallel and Dis-
tributed Systems. In Proc. of the 11th Intl. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS ’12), pages 1265–1266, June 2012.

[95] Raz Nissim, Ronen Brafman, and Carmel Domshlak. A General, Fully Dis-
tributed Multi-Agent Planning Algorithm. In Proc. of the 9th Intl. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS ’10), pages 1323–
1330, 2010.

[96] Geoff Nitschke. Emergence of Cooperation: State of the Art. Artificial Life,
11(3):367–96, January 2005.

[97] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1999.

[98] Djamila Ouelhadj and Sanja Petrovic. A Cooperative Hyper-Heuristic Search
Framework. Journal of Heuristics, 16(6):835–857, December 2009.

BIBLIOGRAPHY 86

[99] Liviu Panait and Sean Luke. Cooperative Multi-Agent Learning: The State
of the Art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434,
2005.

[100] David C. Parkes and Bernardo A. Huberman. Multiagent Cooperative Search
for Portfolio Selection. Games and Economic Behavior, 35(1-2):124–165,
April 2001.

[101] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[102] Judea Pearl and Jin H. Kim. Studies in Semi-Admissible Heuristics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 4(4):392–399,
1982.

[103] Simon Peyton Jones. The Future is Parallel, and the Future of Parallel is
Declarative. YOW! Australian Developer Conference, 2011.

[104] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell.
In Proc. of the 28th IARCS Ann. Conf. on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS ’08), volume 2, pages
383–414, 2008.

[105] Ira Pohl. The Avoidance of (Relative) Catastrophe, Heuristic Competence,
Genuine Dynamic Weighting and Computational Issues in Heuristic Problem
Solving. In Proc. of the 3rd Intl. Joint Conference on Artificial Intelligence
(IJCAI ’73), pages 12–17, 1973.

[106] Curt Powley and Richard E. Korf. Single-Agent Parallel Window
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(5):466–477, May 1991.

[107] Paul Walton Purdom Jr. Search Rearrangement Backtracking and Polyno-
mial Average Time. Artificial Intelligence, 21(1-2):117–133, March 1983.

[108] Daniel Ratner and Manfred Warmuth. Finding a Shortest Solution for the
NxN Extension of the 15-PUZZLE Is Intractable. In Proc. of the 4th National
Conference on Artificial Intelligence (AAAI ’86), pages 168–172, 1986.

[109] Daniel Ratner and Manfred Warmuth. The (Nˆ2-1)-puzzle and Related
Relocation Problems. Journal of Symbolic Computation, 10(2):111–137, July
1990.

BIBLIOGRAPHY 87

[110] Thomas Rauber and Gudula Rünger. Parallel Programming for Multicore
and Cluster Systems, 2nd ed. Springer, 2010.

[111] Yves Rochat and Éric D. Taillard. Probabilistic Diversification and Intensifi-
cation in Local Search for Vehicle Routing. Journal of Heuristics, 1(1):147–
167, 1995.

[112] David P. Rodgers. Improvements in Multiprocessor System Design. ACM
SIGARCH Computer Architecture News, 13(3):225–231, June 1985.

[113] John W. Romein, Aske Plaat, Henri E. Bal, and Jonathan Schaeffer. Trans-
position Table Driven Work Scheduling in Distributed Search. In Proc. of
the 15th National Conference on Artificial Intelligence (AAAI ’99), pages
725–731, 1999.

[114] Stuart Russell. Efficient Memory-Bounded Search Methods. In Proc. of the
10th European Conference on Artificial Intelligence (ECAI ’92), pages 1–5,
August 1992.

[115] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall Press, 2009.

[116] Tomas Salamon. Design of Agent-Based Models: Developing Computer Sim-
ulations for a Better Understanding of Social Processes. Bruckner, 2011.

[117] John E. Savage. Models of Computation - Exploring the Power of Computing.
Addison-Wesley, 1998.

[118] Tommaso Schiavinotto and Thomas Stützle. A Review of Metrics on Permu-
tations for Search Landscape Analysis. Computers & Operations Research,
34(10):3143–3153, October 2007.

[119] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Parallel Actor
Monitors: Disentangling Task-Level Parallelism From Data Partitioning in
the Actor Model. Science of Computer Programming, 80:52–64, 2014.

[120] Yoav Shoham. Agent-Oriented Programming. Artificial Intelligence,
60(1):51–92, March 1993.

[121] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations. Cambridge University Press,
2009.

[122] Jerry Slocum and Dic Sonneveld. The 15 Puzzle Book. The Slocum Puzzle
Foundation, 2006.

BIBLIOGRAPHY 88

[123] Anthony Stentz. The Focussed D* Algorithm For Real-Time Replanning.
In Proc. of the 14th International Joint Conference on Artificial Intelligence
(IJCAI ’95), volume 2, pages 1652–1659, August 1995.

[124] Xian-He Sun and Lionel M. Ni. Another View on Parallel Speedup. In
Proc. of the 1990 ACM/IEEE Conference on Supercomputing (Supercom-
puting ’90), pages 324–333, October 1990.

[125] Michel Toulouse, Teodor G. Crainic, and Brunilde Sansó. An Experimental
Study of Systemic Behavior of Cooperative Search Algorithms. In Meta-
Heuristics, chapter 26, pages 373–392. Springer, 1999.

[126] Michel Toulouse, Teodor G. Crainic, and Brunilde Sansó. Systemic Behavior
of Cooperative Search Algorithms. Parallel Computing, 30(1):57–79, January
2004.

[127] Michel Toulouse, Krishnaiyan Thulasiraman, and Fred Glover. Multi-level
Cooperative Search: A New Paradigm for Combinatorial Optimization and
an Application to Graph Partitioning. In Proc. of the 5th Intl. Euro-Par
Conference on Parallel Processing (Euro-Par ’99), pages 533–542, 1999.

[128] Richard A. Valenzano, Jonathan Schaeffer, and Nathan R. Sturtevant. Find-
ing Better Candidate Algorithms for Portfolio-Based Planners. Proc. of the
23rd Intl. Conf. on Automated Planning and Scheduling (ICAPS ’13), 2013.

[129] Danny Weyns, Andrea Omicini, and James Odell. Environment As a First
Class Abstraction in Multiagent Systems. Autonomous Agents and Multi-
Agent Systems, 14(1):5–30, 2007.

[130] Colin P. Williams and Tad Hogg. Using Deep Structure to Locate Hard
Problems. In Proc. of the 10th National Conference on Artificial Intelligence
(AAAI ’92), pages 472–477, July 1992.

[131] Colin P. Williams and Tad Hogg. Exploiting the Deep Structure of Con-
straint Problems. Artificial Intelligence, 70(1-2):73–117, October 1994.

[132] Michael J. Wooldridge. An Introduction to MultiAgent Systems, 2nd ed.
Wiley, 2009.

[133] Rong Zhou and Eric A. Hansen. Structured Duplicate Detection in External-
Memory Graph Search. In Proc. of the 19th National Conference on Artificial
Intelligence (AAAI ’04), pages 683–688, July 2004.

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Parallelism and concurrency
	2.2 The parallel computing landscape
	2.3 Speedup and parallel performance
	2.4 Parallel programming
	2.5 Cooperation
	2.6 Cooperative search
	2.7 Agents and multi-agent systems

	3 A! – Cooperative heuristic search
	3.1 Vanilla A*
	3.1.1 Algorithm details
	3.1.2 Variants and related work

	3.2 Constructing cooperative search
	3.2.1 Cooperating agents in multi-agent search
	3.2.2 Cooperation is communication
	3.2.3 Actors as minimal cooperating agents
	3.2.4 Challenges in searching together

	3.3 The A! algorithm
	3.3.1 Overview
	3.3.2 Optimality
	3.3.3 Cooperation architecture
	3.3.4 Algorithm details

	3.4 Tradeoffs and implementation challenges

	4 Solving n-puzzles with A!
	4.1 The n-puzzle
	4.2 Experimental setting
	4.2.1 A! implementation
	4.2.2 Experiment design

	4.3 Computational results
	4.3.1 Cooperation benefit and scalability
	4.3.2 Heuristic impact
	4.3.3 Path diversity
	4.3.4 Hybrid performance

	4.4 Discussion

	5 Related work
	5.1 Cooperative search
	5.2 Parallel A*

	6 Conclusion

