
Partitioning SAT Instances for Distributed Solving

Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä

Aalto University School of Science and Technology
Department of Information and Computer Science

PO Box 15400, FI-00076 AALTO, Finland
{Antti.Hyvarinen,Tommi.Junttila,Ilkka.Niemela}@tkk.fi

Abstract. In this paper we study the problem of solving hard propositional sat-
isfiability problem (SAT) instances in a computing grid or cloud, where run times
and communication between parallel running computations are limited. We study
analytically an approach where the instance is partitioned iteratively into a tree
of subproblems and each node in the tree is solved in parallel. We present new
methods which combine clause learning and look-ahead to construct partitions,
evaluate their efficiency experimentally, and finally demonstrate the power of the
approach in a real grid environment by solving several instances that were not
solved in a SAT solver competition.

1 Introduction

This paper develops novel techniques for solving hard propositional satisfiability (SAT)
problems in widely distributed computing environments such as computing grids or
clouds. An example of this kind of an environment is NorduGrid (http://www.
nordugrid.org/) that we use in some of the experiments of this paper.

NorduGrid provides a high number of readily available, high-end, heterogeneous
computing facilities cost-efficiently, suggesting that this type of computing is an in-
teresting target for applications such as SAT solving. The distributed environments in
this work differ in some significant aspects from some other common distributed com-
puting environments, such as multi-core workstations, and even local parallel environ-
ments, such as computing clusters: once a computation or a job is submitted to a grid
or a cloud, the execution of the job is not immediate, as it is delayed by an amount of
time depending on the availability of the computing resources; the executing jobs have
limited communication capabilities restricted by the site security policies; and the jobs
are only allowed to use a predetermined amount of CPU time and memory during their
execution.

The goal of this work is to develop distributed SAT solving for such environments
using the best available SAT solvers as black-box subroutines with minimal modifi-
cations. The goal can be straightforwardly achieved by exploiting the randomized na-
ture of current state-of-the-art SAT solvers with the simple distribution (SD) approach,
where one just runs a randomized solver a number of times independently. This leads
to surprisingly good speed-ups even in a grid environment with substantial communica-
tion and other delays [1]. The approach could be extended by applying particular restart
strategies [2, 3] or employing an algorithm portfolio scheme [4, 5]. Another key feature

in modern SAT solvers is the use of conflict driven clause learning techniques. Extend-
ing the simple distribution approach with this feature leads to a powerful SAT solving
technique [6].

While the SD approach has led to surprisingly good performance, it provides no
mechanism for splitting the search into more manageable portions which can be treated
in parallel. A partition function maps a SAT instance φ to a set of derived instances
φ1, . . . , φn by including additional constraints to φ so that the original instance is satis-
fiable if and only if at least one of the derived instances is. We call plain partitioning an
approach where a partition function is used once and each resulting instance is solved
in parallel. A typical approach to splitting the search space is to use guiding path or
semantic decomposition based techniques [7–11]. However, these techniques impose
constraints on the underlying solver technology and are not ideal for grids and clouds
since they require relatively frequent communication between jobs. Furthermore, an im-
proper partition function can produce derived instances as difficult to solve as the orig-
inal instance. In such cases plain partitioning leads to a detrimental speed-up anomaly,
where an increase in parallelism results in an increase in expected run time even if the
delays in the environment are ignored [12]. In an environment with run time limitations
this results in decrease of solving probability.

This work studies an approach for distributed SAT solving with partition trees [13].
The approach has modest communication requirements and can use any SAT solver
as a black-box subroutine. The basic idea in the partition tree approach is straightfor-
ward: jobs consisting of a solver and a SAT instance run in the distributed environment.
A partition function is used to construct the SAT instances, which are organized as a
tree. The first job, consisting of the original instance, will be the root of the tree; the
subsequent child jobs are constructed by applying the partition function to the original
instance, and later recursively to the derived instances. The resulting tree is expanded
until a solution can be determined or all parallel resources are in use. In the latter case,
the resource limits guarantee that jobs will eventually terminate and more constrained,
hopefully easier to solve, jobs can be submitted to the environment.

The main contributions of this work are the following. (i) We prove that when us-
ing the partition tree approach the expected run time will never increase as more re-
sources are introduced. (ii) We develop novel partition functions, which use conflict
driven clause learning techniques, and two use in addition unit propagation looka-
head [14] to form the derived instances. (iii) We develop a novel method for speed-
ing up the computation of lookahead, and (iv) present results for a learning looka-
head solver. (v) We show that the partition tree approach is in many cases superior
to the simple distribution approach, and (vi) finally show the efficiency of the ap-
proach by solving several instances not solved in the SAT 2009 solver competition
(http://www.satcompetition.org/).

2 Preliminaries

A literal l is a propositional variable x or its negation ¬x; as usual, we define that
¬¬x = x. A clause is a disjunction of literals and a (CNF) formula is a conjunction of
clauses. A clause is unit if it only contains one literal. Whenever convenient, we may

interpret a formula as a set of clauses and a clause as a set of literals. For instance, the
formula φ = (x)∧ (¬x∨¬y)∧ (y∨¬x∨z)∧ (x∨y)∧ (y∨v∨¬w) can be represented
as a set {{x}, {¬x,¬y}, {y,¬x, z}, {x, y}, {y, v,¬w}}. Let vars(φ) denote the set of
variables occurring in φ and lits(φ) = {x,¬x | x ∈ vars(φ)}. A truth assignment τ for
a formula φ is a subset of lits(φ); τ is (i) inconsistent if both x ∈ τ and ¬x ∈ τ for
some variable x, (ii) consistent if it is not inconsistent, and (iii) complete for φ if either
x ∈ τ or ¬x ∈ τ for each x ∈ vars(φ). A literal l is assigned to true by τ if l ∈ τ
and to false if ¬l ∈ τ ; if it is assigned to either, it is called assigned by τ . For any truth
assignment or other set of literals τ , we write φ ∧ τ to denote the formula φ ∧

∧
l∈τ (l).

A complete and consistent truth assignment satisfies the formula φ if it includes at least
one literal of each clause in φ; if such a satisfying assignment exists, φ is satisfiable and
unsatisfiable otherwise.

Given a formula φ and a truth assignment τ for it, we use up(φ, τ) to denote the set
of literals implied by unit propagation on φ under τ ; formally, up(φ, τ) is the smallest
set U of literals satisfying (i) τ ⊆ U , and (ii) if a clause (l1 ∨ ... ∨ ln) is in φ and
{¬l1, ...,¬li−1,¬li+1, ...,¬ln} ⊆ U , then li ∈ U . Note that if φ contains a unit clause
(l), then l ∈ up(φ, τ) for all truth assignments τ . Obviously, if up(φ, τ) is inconsistent,
then the formula φ ∧ τ is unsatisfiable. As an abbreviation, we may write up(φ) to
denote up(φ, ∅).

3 Approaches for Distributed Solving

This work studies distributed solving of difficult SAT instances by partitioning an in-
stance into independently solvable subproblems, solving the subproblems, and deter-
mining the satisfiability of the original instance by combining the results. The presented
solving methods are designed for environments such as computing grids and clouds.
These differ from parallel or multi-core environments by providing large amounts of
easily available computing power on the expense of placing limitations on the run times
and communication of the executions. Furthermore, the framework developed here as-
sumes nothing on the implementation of the SAT solver, but instead treats the solver as
a black-box which takes as input a SAT instance and returns either satisfiable or unsat-
isfiable. In the following analysis we will first ignore the run time limitations, and then
later mention how they affect the results.

Simple Distribution. Grids and clouds encourage certain approaches for SAT solving.
An efficient approach is the simple distribution (SD), where randomized SAT solvers,
taking as input the instance and optionally a seed used to initialize the random num-
ber generator of the solver, are run in parallel and the solution is obtained from the
first solver that finishes and finds the instance either satisfiable or unsatisfiable. The
approach is especially suitable for SAT solving, since most modern sequential solvers
already employ some form of randomization. This approach has an obvious drawback,
since minimum run time of the instance limits the obtainable speed-up.

Plain Partitioning. The simple distribution approach can be strengthened by forcing
constraints on the overlap of the work of independent SAT solvers. The constraints

result in smaller search spaces for the solvers and, hopefully, executions which can
be finished in shorter time than the original execution. In this work, we use partition
functions to constrain the overlap. A partition function P(φ, n) maps a SAT instance φ
and an integer n ≥ 2 to a set {φ1, . . . , φn} of derived instances such that (i) φ1 ∨ . . .∨
φn ≡ φ, and (ii) φi ∧ φj is unsatisfiable for i 6= j. From (i) it follows that the instance
φ is satisfiable if and only if at least one derived instance is satisfiable.

A simple approach to solving SAT instances in a distributed environment called
plain partitioning works by applying P(φ, n) to an instance φ and solving the derived
instances φ1, . . . , φn in parallel. The plain partitioning approach bears close resem-
blance to the guiding path approach [9, 15], and, provided that the run time reduction
caused by the partition function depends naturally on n, the plain partitioning approach
can solve arbitrarily difficult problems given a sufficiently large n [12]. However, plain
partitioning has some fundamental flaws, which prevent it from being a practical solv-
ing method in distributed environments as such. Firstly, it is of course problematic to
determine the value for n. Secondly, a more subtle problem is that if no guarantees
can be given on the run times of the derived instances and the instance to be solved
is unsatisfiable, increasing n arbitrarily might increase the expected run time. We call
a badly working partition function, which results in derived instances with run times
equal to that of the original instance, a void partition function1. Void partition functions
are especially harmful for proving unsatisfiability, since it is not possible to obtain any
speedup with a void partition function in plain partitioning [12]:

Proposition 1. Let φ be an unsatisfiable instance and P(φ, ·) a void partition function.
Then the expected run time of the plain partitioning approach is at least as large when
using the partition function P(φ, n) as when using P(φ, n− 1).

The Partition Tree Approach. To overcome these difficulties, we use instead P(φ, n)
to construct a partition tree and attempt the solving of the nodes in the tree in parallel.
A partition tree of a formula φ is a tree rooted at φ, where nodes are propositional
formulas, all except the leaves having n children constructed with a partition function.
A SAT instance can be shown satisfiable by showing any node of the partition tree
satisfiable, and unsatisfiable by solving at least one instance on every path from the
root to the leaves. See Fig. 1 (right) for an example of a partition tree and such a set
of instances. This approach has the advantage over plain partitioning that the expected
run time of the approach cannot be higher than that of solving φ with a sequential
SAT solver: since φ is in the root of the partition tree, showing it unsatisfiable suffices
to prove unsatisfiability. We prove the following stronger claim for the partition tree
approach, which intuitively states that if more parallel resources are used, the expected
time required to solve the instance φ decreases. We formalize this assuming that all
leaves of the tree have the same amount k of ancestors (i.e., the height of the tree is k),
and all instances in the tree are executed simultaneously with no delay.

Proposition 2. Let φ be an unsatisfiable instance, Tk and Tm be two partition trees of
height k and m, respectively, constructed with a void partition function, and k < m.

1 Given a SAT solver that efficiently concentrates on solving unsatisfiable instances, a partition
function can be void, for example, when the SAT instance consists of an unsatisfiable and a
satisfiable part sharing no variables and the partitioning constrains only the satisfiable part.

Then the expected run time of the partition tree approach is at most as large when using
Tm as when using Tk.

Proof. We show by induction on the height of the partition tree that the probability
that φ is solved within time t cannot decrease, from which the claim follows. Let
q(t) be the probability that φ is solved sequentially within time t, q′(t) its deriva-
tive at t, and qi(t) denote the probability that φ is solved within time t using a par-
tition tree of height i. Then the probability q0(t) = q(t). The probability that the in-
stance is solved within time t with the partition tree approach and tree of height one is
q1(t) =

∫ t

0
(q′(τ)+(1−q(τ))nq′(τ)q(τ)n−1dτ , that is, the sum of probability q′(τ)dτ

that the instance is solved in the root of the tree at time τ , and the probability that the
instance has not been solved in the root, has been solved by all children but one by time
τ , and is solved at time τ in the last child. A direct calculation shows that q1(t) ≥ q0(t).
Assume now that qk(t) ≥ qk−1(t) for all t ≥ 0. As previously, qk+1(t) =

∫ t

0
(q′(τ) +

(1− q(τ))nq′k(τ)qk(τ)n−1)dτ = q(t) + qk(t)n −
∫ t

0
q(t)nq′k(τ)qk(τ)n−1dτ. Integra-

tion by parts on the negative term results in qk+1(t) = q(t) + qk(t)n − qk(t)nq(t) +∫ t

0
qk(τ)nq′(τ)dτ = q(t) + (1 − q(t))qk(t)n +

∫ t

0
qk(τ)nq′(τ)dτ. By the induction

hypothesis qk+1(t) ≥ q(t) + (1− q(t))qk−1(t)n +
∫ t

0
qk−1(τ)nq′(τ)dτ = qk(t) ut

In practice the computing environment places some limitations on the approach.
The number of parallel computing resources is limited, and therefore only a subset of
the instances of an arbitrary partition tree can be executed simultaneously. Since the run
times of these instances are bounded, the resources will always become available again.
Therefore the partition tree is constructed on-the-fly. In our experiments, we use an
approach where an instance is first submitted for solving and, while it is being solved,
the partition function is applied to the instance locally to obtain the children of the
instance, later submitted and repartitioned. The partition order is breadth first. Once a
subtree is shown unsatisfiable, it is no longer expanded, and therefore it is not necessary
to determine the height of the tree in advance.

The comparison between plain partitioning and the partition tree approach is similar
also when the execution times are limited, only this time it is also possible that the
instance cannot be solved. Figure 1 shows an example where an instance φ is solved
using a randomized SAT solver in a distributed environment and plain partitioning (left);
and the partition tree approach (right) using a void partition function. As the partition
function is void, all derived instances are as difficult as the original instance. The plain
partitioning approach is “unlucky” and fails to find a solution since the instance φ1 is
terminated after its execution time bound is exceeded. The partition tree approach is
even more unlucky, and fails to find solutions for the two instances φ1 and φ′2. In the
partition tree approach, however, the instance φ′1 is solved and therefore the subtree
rooted at φ′1 can be determined unsatisfiable even though φ1 times out. On the other
hand, the subtree rooted at φ′2 can be determined unsatisfiable even though φ′2 times out
since φ3 and φ4 are solved. Note that the same scenario is possible even if the partition
function is not void.

timeout unsatunsat unsat
φ1 φ2 φ3

φ

φ4

unsat timeout

unsat

timeout

unsatunsattimeout
φ1 φ2 φ3 φ4

φ

φ′

1
φ′

2

Fig. 1. An example of solving an unsatisfiable SAT instance φ with plain partitioning (left), where
the instance is not solved due to a time out in φ1, and the partition tree approach (right), where
solving succeeds, since φ′

1 is shown unsatisfiable. All paths from the root to the leaves pass
through the unsat instances in the shaded set.

4 DPLL-Based Partitioning with Lookahead

Our first new partition function utilizes and extends the ideas applied in traditional,
chronologically backtracking and non-learning, DPLL-based SAT solvers employing
unit propagation lookahead (see e.g. [14]) such as SATZ and MARCH. Given a formula
φ, such solvers basically try to iteratively build a satisfying truth assignment τ by heuris-
tically selecting a currently unassigned literal l and then considering two branches: one
for the truth assignment up(φ, τ ∪ {¬l}) and one for up(φ, τ ∪ {l}). If the consid-
ered truth assignment is inconsistent, the branch is closed and the solver backtracks
chronologically. In order to prune the resulting search tree, these solvers also apply the
so-called one-step unit propagation lookahead (or simply lookahead) to extend truth as-
signments in a satisfiability preserving way and, thus, also to detect inconsistencies and
close unsuccessful branches earlier. As the truth assignments in the search tree nodes k
steps below the root are mutually exclusive and cover all satisfying truth assignments,
our core idea here is to use these as partitioning constraints when we want to partition
a formula into 2k derived formulas.

We next review the lookahead procedure (Sect. 4.1) and formally describe the par-
tition function (Sect. 4.2). In addition, we give a novel technique for speeding up the
computation of lookahead (Sect. 4.3) and, for the sake of analyzing the results in forth-
coming sections, evaluate the efficiency of the lookahead procedure when applied as a
formula simplifying technique (Sect. 4.4).

4.1 One-Step Unit Propagation Lookahead

The lookahead is based on the so-called failed literal rule. Given a formula φ and a truth
assignment τ for it, a literal l ∈ lits(φ) is a failed literal under φ ∧ τ if up(φ, τ ∪ {l})
is inconsistent. As a consequence, if l is a failed literal under φ ∧ τ , then φ ∧ (τ ∪ {l})
is unsatisfiable, implying that φ∧ τ is satisfiable iff φ∧ (τ ∪ {¬l}) is. The failed literal
rule states that if l is a failed literal under φ ∧ τ , then one can extend τ with ¬l when
searching for the satisfying truth assignments for φ∧ τ . Note the monotonicity of failed

literals: if l is a failed literal under φ ∧ τ , then it is also under φ ∧ τ ′ for any truth
assignment τ ′ ⊇ τ .

Example 1. Assume a formula φ = (¬x4 ∨ ¬x7 ∨ x15)∧(¬x15 ∨ ¬x3 ∨ x21)∧(¬x21∨
x5 ∨ x17) ∧ (¬x17 ∨ ¬x60 ∨ x89) ∧ (¬x17 ∨ ¬x89) ∧ ... and a truth assignment τ =
{x7, x3,¬x5, x60}. Now x4 is a failed literal under φ∧ τ as up(φ, τ ∪{x4}) is conflict-
ing; thus φ ∧ τ is satisfiable iff φ ∧ (τ ∪ {¬x4}) is.

The lookahead procedure then applies the failed literal rule until there are no more
failed literals unassigned by the truth assignment τ . The result of applying lookahead on
a formula φ and truth assignment τ , denoted by lookahead(φ, τ), is, thus, the smallest
set U of literals including τ and closed under the failed literal rule:

1. τ ⊆ U , and
2. if a literal l ∈ lits(φ) is a failed literal under φ ∧ U , then ¬l ∈ U .

Observe that (i) if lookahead(φ, τ) is inconsistent, then φ ∧ τ is unsatisfiable, and (ii)
φ ∧ τ is satisfiable iff φ ∧ lookahead(φ, τ) is.

Note that computation of the lookahead can very time consuming: the best currently
known techniques require in the worst case at least cubic time in the number of vari-
ables in the formula. Thus, solvers such as SATZ and MARCH do not usually compute
the full lookahead but only apply the failed literal rule only to a subset of unassigned
variables. Naturally, many heuristics have been developed to speedup lookahead com-
putation (see e.g. [14] for existing ones and Sect. 4.3 below for a new one). In addition
to the failed literal rule, there are also other search tree pruning rules such as the “nec-
essary assignments” and “double lookahead” rules (see e.g. [14, 16]); evaluation of the
efficiency of these rules in the context of partitioning is left to future work.

4.2 The Partition Function

As mentioned above, the proposed partition function uses the (up to) 2k nodes at depth
k in the search tree of a non-learning lookahead SAT solver to partition the formula φ.
The pseudo-code for the function is shown in Fig. 4(a); to obtain a partitioning, it is
invoked with latree-partition (φ, ∅, 0, k).

In the pseudo-code, the function lookahead (φ, τ ′) computes both the lookahead
set τ ′′ = lookahead(φ, τ ′) and a variable selection heuristic function h associating
a value to each variable x not assigned by τ ′′. In our experiments, we use the fol-
lowing lookahead balancing heuristics function (adopted from the SMODELS stable
models solver [17]) that tries to estimate the worst case search tree size after selecting
x. As x is not assigned by τ ′′, we define the “remaining search tree size estimates”
h−φ,τ (x) = 2|vars(φ)|−|up(φ,τ∪{¬x})| and h+

φ,τ (x) = 2|vars(φ)|−|up(φ,τ∪{x})|, i.e. the
numbers of unassigned variables after branching on ¬x and x, respectively, and per-
forming unit propagation. To estimate the remaining search tree size on both branches,
we define the heuristic function h to be

hφ,τ (x) = max
{
h−φ,τ (x), h+

φ,τ (x)
}

¬x5

x89

x17

¬x89

x21x4

x7 x3 x60

x15 λ

Fig. 2. A conflict graph

and select a variable that minimizes the function (ties are broken, e.g., randomly). Ob-
serve that this heuristic function is obtained practically as a side product when com-
puting the lookahead. The computation of the lookahead and the heuristic function h
is very important for obtaining small search trees (and, thus, good partitionings); there-
fore, whenever a time limit is imposed on the partition function, we try to divide the
available time evenly between the lookahead functions in the search tree nodes.

4.3 Exploiting Unique Implication Points

We now show how to apply the conflict analysis technique [18, 19] used in modern
clause learning SAT solvers to enhance the failed literal rule in a way that allows it to
sometimes detect multiple failed literals at the same time.

Assume a formula φ, a consistent truth assignment τ for φ that is closed under unit
propagation (meaning that up(φ, τ) = τ), and a literal l ∈ lits(φ) that is not assigned by
τ . We now want to check whether l is a failed literal under φ∧ τ , i.e. whether up(φ, τ ∪
{l}) is inconsistent. To do this, we start from τ ∪ {l} and apply the unit propagation
rule until no new literals can be deduced or an inconsistency is found. We now assume
that up(φ, τ ∪ {l}) is inconsistent. Assuming that the computation of up(φ, τ ∪ {l})
is terminated as soon as an inconsistency is detected, it can be characterized by the
corresponding conflict graph, which is a directed acyclic graph Gφ,τ,l = 〈V, E〉 with
a vertex set V ⊆ lits(φ) ∪ {λ} for a special symbol λ /∈ vars(φ) and fulfilling the
following conditions:

1. If l′ ∈ V , l′ 6= λ, and l′ ∈ τ ∪ {l}, then l′ does not have any incoming edges.
2. If l′ ∈ V , l′ 6= λ, and l′ /∈ τ ∪ {l}, then l′ has a non-empty set of incoming edges

originating from the vertices l1,...,lk and the clause (¬l1 ∨ ... ∨ ¬lk ∨ l′) is in φ.
3. There is exactly one variable x ∈ vars(φ) such that both x,¬x ∈ V . The special

symbol λ is a vertex that has incoming edges from these vertices x and ¬x only.

A vertex l′ 6= λ such that ¬l′ /∈ τ is a unique implication point in the conflict graph if
all the paths from the vertex l to the vertex λ go through l′ (observe that the vertex l is
a unique implication point). As the edges incoming to a vertex describe one application
of the unit propagation rule, we have the following result. Take any unique implication
point l′ and the sub-graph of Gφ,τ,l induced by vertex set consisting the vertex l′ and the
vertices having a path to λ not visiting l′. Now this sub-graph is the conflict graph cor-
responding to a computation of up(φ, τ ∪{l′}) and, thus, up(φ, τ ∪{l′}) is inconsistent
and l′ is a failed literal under φ ∧ τ .

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

U
IP

 o
pt

im
iz

at
io

n

no UIP optimization

 1

 10

 100

 1000

 0 50 100 150 200 250 300

tim
e

t (
in

 s
ec

on
ds

)

number of problems solved within t seconds

original
lookahead-simplified

(a) comparing lookahead computation
times (in seconds)

(b) the effect of applying lookahead as a
preprocessing technique

Fig. 3. Some experimental results on computing and applying lookahead

Example 2. Assume a formula φ = (¬x4 ∨ ¬x7 ∨ x15)∧(¬x15 ∨ ¬x3 ∨ x21)∧(¬x21∨
x5 ∨ x17) ∧ (¬x17 ∨ ¬x60 ∨ x89) ∧ (¬x17 ∨ ¬x89) ∧ ... and a truth assignment τ =
{x7, x3,¬x5, x60} closed under unit propagation. Now x4 is a failed literal under φ∧ τ
as up(φ, τ ∪{x4}) is conflicting; the conflict graph corresponding to a sequence of unit
propagation rule applications is shown in Fig. 2. Now the nodes x4, x15, x21 and x17

are all unique implication points and thus the literals x4, x15, x21 and x17 are all failed
literals under φ ∧ τ . Observe that ¬x15, ¬x21 and ¬x17 do not necessarily belong to
the set up(φ, τ ∪ {¬x4}) and thus this unique implication point exploitation method is
able to derive truly additional failed literals.

We have experimentally evaluated the efficiency of this technique by implementing
a lookahead procedure including it on top of the MINISAT solver [20] (version 1.14)
and computing the lookahead set lookahead(φ, ∅) for all the 887 formulas φ in the
“crafted”, “industrial”, and “random” categories of the SAT-COMP 2007 solver compe-
tition benchmark set (see http://www.satcompetition.org/). The lookahead
computation time was limited to 300 seconds: of the 887 formulas, the lookahead com-
putation finished within 300 seconds on 853/855 formulas (without/with unique impli-
cation point exploitation) while for the others possibly only a subset of lookahead(φ, ∅)
was computed. The results in Fig. 3(a) show that on a number of problems it is definitely
worthwhile to find and use the unique implication points as a 2–4 times speedup can
be obtained. Furthermore, the results also show that the computation of unique impli-
cation points is not computationally too expensive when compared to unit propagation
performed during the lookahead computation; thus when the unique implication point
technique does not help, it does not slow down the lookahead computation, either.

4.4 Lookahead as a Preprocessing Technique

One may now think that applying lookahead as a preprocessing step might make the
formula significantly easier to solve. That is, given a formula φ, if we compute the

lookahead lookahead(φ, ∅) and add the unit clauses found to φ, then the resulting for-
mula φ ∧ lookahead(φ, ∅) would be much easier to solve than φ. Unfortunately, this
is not the case, at least when considering the 573 formulas in the “crafted” and “ap-
plication” categories of the SAT-COMP 2009 solver competition (see http://www.
satcompetition.org/). Figure 3(b) shows a digest of the run times of MINISAT
[20] (version 2 without the SatElite preprocessor) on the original 573 formulas as well
as on the corresponding lookahead-simplified formulas. The lookahead computation
time, which was limited to 300 seconds, is not included in the “lookahead-simplified”
plot; of the 573 formulas, the lookahead computation finished within 300 seconds on
516 formulas. The results clearly show that performing lookahead-based formula sim-
plification does not give substantial run time benefits on these instances. And if the
lookahead computation time was included in the “lookahead-simplified” plot, the result
would slightly worse than the “original” plot.

We have included this negative result as it shows that the positive results we obtain
later in this paper, when applying lookahead for partitioning SAT formulas, are not
caused by the fact that simply applying lookahead to the original formula would have
produced as good results.

5 Partitioning with Scattering

The partition function presented in Sect. 4 can be contrasted to the scattering approach
presented in [13]. The approach is a generalization of DPLL-based partitioning, in a
sense that not only literals but also longer clauses are conjoined with the original in-
stance. More formally, given an input formula φ, the derived instances are of the form

φi =

φ ∧ c1 when i = 1,
φ ∧ ¬c1 ∧ . . . ∧ ¬ci−1 ∧ ci when 1 < i < n, and
φ ∧ ¬c1 ∧ . . . ∧ ¬cn−1 when i = n,

where ci = x1 ∧ . . . ∧ xdi conjoins literals and ¬ci = ¬x1 ∨ . . . ∨ ¬xdi is a clause.
Fig. 4(b) presents the cdcl-partition algorithm for scattering. The algorithm takes as

input an instance φ and a sequence d1, . . . , dn which determines the number of literals
in the clauses c1, . . . , cn−1. The algorithm is based on the conflict-driven clause learn-
ing (CDCL) solver search, altered so that once a sufficient amount of decision literals
are chosen, the literals are used to produced a partition, the solver backtracks to the top-
most decision level, inserts a clause consisting of the negation of the decision literals,
and continues the partitioning on the altered instance on lines 10–14.

We extend the algorithm described in [13] by a lookahead-type call similar to the
one described in Sect. 4 by computing not only the unit propagation up(φ, τ) but also
lookahead(φ, τ), effectively implementing a CDCL solver with lookahead. In contrast
to the lascatter-partition () algorithm in Fig. 4(a), we use the first unique implication
point (1-UIP), as in most CDCL solvers, to guide the backtracking.

There are several possibilities for determining the values for di. In this work we use
the approach presented in [13], where di minimizes the “error function” Err(di) =
| 2−di − 1

n−i+1 |. The error function can be motivated as follows. Given an instance φ
with search space size ||φ|| and a number n, if the search space of φ is to be divided

latree-partition (φ,τ ,i,m):
1 let τ ′ := up(φ, τ)
2 let 〈τ ′′, h〉 := lookahead (φ, τ ′)
3 if τ ′′ is inconsistent
4 return
5 if τ ′′ satisfies φ or i = m
6 Output the derived formula φ ∧ τ ′′

7 return
8 let x be h-best and unassigned by τ ′′

9 call latree-partition (φ,τ ′′ ∪ {x},i + 1,m)
10 call latree-partition (φ,τ ′′ ∪ {¬x},i + 1,m)

(a) DPLL-based partitioning with lookahead

cdcl-partition (φ, d1, . . . , dn):
1 let τ := ∅, dl := 0, and i := 1
2 while true
3 let τ ′ := up(φ, τ)
4 let 〈τ ′′, h〉 := lookahead (φ, τ ′)
5 if τ ′′ is inconsistent
6 let dl := analyze ()
7 if dl = −1 return done
8 else backtrack (dl)
9 else if dl = di

10 Output the derived formula φ ∧ τ ′′

11 if i = n return done
12 let φ := φ ∧ (¬x1 ∨ . . . ∨ ¬xdi)
13 let i := i + 1
14 backtrack (0)
15 else
16 let dl := dl + 1
17 let xdl be h-best and unassigned by τ ′′

18 if xdl = None return sat
19 let τ := τ ∪ τ ′′ ∪ {xdl}
(b) Scattering-based lookahead partitioning

Fig. 4. Algorithms for partitioning

iteratively into n equally sized, non-overlapping partitions φ1, . . . , φn of size ||φ||/n,
then a direct calculation shows ||φ||

n =
(
||φ|| − (i− 1) ||φ||n

)
ri, and ri = 1/(n − (i −

1)). We approximate the size of the search space with the worst case behavior, that
is, ||φ|| = 2vars(φ), and that ||φ ∧ x1 ∧ . . . ∧ xdi

|| = 2vars(φ)−di , where x1, . . . , xdi

are literals. Hence, the closest approximation of ri is obtained by minimizing the error
function Err(di) = |2−di − ri|.

The algorithm proves an instance unsatisfiable on line 7, if it has not altered the
instance on line 12. Hence, the algorithm can be used for sequential SAT solving by
disabling the partition construction on lines 10–14. We implemented the algorithm on
top of MINISAT version 1.14, and compare its performance against the unaltered MINI-
SAT v1.14 implementation on a randomly selected set of instances from the crafted and
applications categories of the SAT-COMP 2009 solver competition in Fig. 5 (a). The
timeout limit was 1200 seconds, and the implementation uses the lookahead balancing
heuristic in branching. The results show that the original version of MINISAT solves
more than twice as many instances as the lookahead implementation, which is in ac-
cordance with the results in [21]. Perhaps surprisingly, in the following experiments we
will see that lookahead is useful in producing partitions.

 0.1

 1

 10

 100

 1000

 20 40 60 80 100 120 140

tim
e

t (
in

 s
ec

on
ds

)

number of problems solved within t seconds

minisat
lookahead

 0.1

 1

 10

 100

 1000

 20 40 60 80 100 120 140 160

tim
e

t (
in

 s
ec

on
ds

)

number of problems solved within t seconds

minisat
LA scatter

VSIDS scatter
LA DPLL

(a) Comparing lookahead based CDCL
solver and standard CDCL solver

(b) Comparing plain MINISAT, vsids scat-
tering, lookahead scattering and DPLL-
based lookahead partitioning

Fig. 5. Some experimental results on solving and partitioning

6 Experiments

This section reports the results of the experiments conducted for comparing the partition
functions discussed in this work. We use the SAT-COMP 2009 benchmark instances for
the evaluation. Our first experiment compares the partition functions when using the
plain partitioning approach, where the partition function is applied once and the result-
ing derived instances are then solved in parallel. We then continue the experiments on
the partition functions using the partition tree approach, first applying it to instances that
were not solved in SAT-COMP 2009, and then comparing the solving times of the parti-
tion tree approach to run times in SAT-COMP 2009. Finally, we study examples where
MINISAT performs significantly worse than some sequential SAT solver in SAT-COMP
2009, and show that these instances are also difficult for the partition tree approach.

6.1 The Plain Partitioning Approach

This experiment compares the three partition functions by partitioning an instance once
and then solving the resulting instances. The 324 instances were randomly selected from
the 573 instances in the crafted and application categories of the SAT-COMP 2009. The
two lookahead-based partition functions described in Sections 4 (DPLL-based partition-
ing with lookahead) and 5 (scattering with lookahead) are compared against a VSIDS-
based partition function described in [13], which was completely reimplemented using
MINISAT v1.14 as the basis. As described in [13], the VSIDS-scatter function is ob-
tained from the cdcl-partition algorithm in Fig. 4(b) by replacing the call to lookahead
by unit propagation. Furthermore, in the re-implemented version the solver runs a nor-
mal CDCL search both initially and after deriving each instance.

The results are reported in Fig. 5 (b). Each instance was divided into eight par-
titions using the scattering-based lookahead (LA scatter) and VSIDS heuristic with

cdcl-partition (VSIDS scatter), and the DPLL-based lookahead partition function with
latree-partition (LA DPLL). The time-out for each partition function was 300 seconds.
The resulting partitions were solved using a standard SAT solver (MINISAT v1.14) and
1200 s time-out for each partition. The figure shows the minimum run time of a satis-
fiable partition, and the maximum run time of the unsatisfiable partitions of an unsat-
isfiable instance. For comparison, the figure also provides the run time of the standard
SAT solver on the original instances with no partitioning (minisat).

The approach using DPLL-based lookahead partitioning solves most instances from
the benchmark set. This is a surprising result, since in principle, the greater freedom of
the scattering approach in choosing the literals should increase the solving performance.
The relatively straightforward scattering-based partition function with VSIDS heuristic
also outperforms the lookahead-based scattering, although the difference is small. The
figure shows that the VSIDS implementation solves instances in zero time, as some
instances were solved with this method already in the partition phase.

6.2 The Partition Tree Approach

The experiments in this section study the partition tree approach and efficiency of the
partition functions using NorduGrid as the distributed computing environment. The par-
tition tree is formed breadth first. The time-out for the whole approach is 6 hours and it
uses 64 CPUs in parallel. The partition functions have a time-out of 300 seconds, and
the time-outs for the executions in the grid vary from 60 to 90 minutes2.

We attempted the solving of 38 instances of the applications category that were not
solved in the SAT-COMP 2009 competition. In total there are approximately 60 such in-
stances. Table 1 lists the run times for the instances we could solve. The time-out in the
competition was 10000 seconds, which is approximately half of the partition tree ap-
proach time-out (6h) in our experiment, but almost twice the maximum execution time
limit of 90 minutes. The reported values are wall clock times in seconds, and time-outs
(when no solution was found in 6 hours) are marked with a dash. The Type column re-
ports the instance satisfiable (SAT) or unsatisfiable (UNSAT) unless no approach could
solve the instance due to a time-out. The lowest solving time is typeset in boldface.

Using the partition tree approach we solved 11 new instances that were not solved in
SAT-COMP 2009, although in some cases the run time was higher than the competition
time-out. The results show that DPLL-based partitioning with lookahead heuristic per-
forms usually best, having the lowest solving time in approximately half of the cases.
This supports the conclusion in the previous experiment on partition functions. How-
ever, we see that the VSIDS partitioning solved two more instances compared to the 8
instances solved by the DPLL-based lookahead approach. The column SD 64 reports
the run time of the simple distribution approach when using 64 CPUs, that is, the min-
imum run time of 64 independent MINISAT v1.14 solvers if it was less than 6 hours.
Based on these results the partition approaches perform usually much better than SD.

To study the performance of the partition tree approach, we also attempted to solve
all 15 instances from the crafted and applications categories of SAT-COMP 2009 that

2 The time limit is not constant to avoid a decrease in performance caused by simultaneous
finishing of a large number of jobs.

Table 1. Wall-clock solving times in seconds for instances from the applications category not
solved in SAT-COMP 2009

Name Type LA DPLL LA scatter VSIDS scatter SD 64

AProVE07-25 UNSAT 8992.60 9176.91 11347.42 —
dated-5-19-u UNSAT 16557.82 20155.96 4124.62 —
eq.atree.braun.12.unsat UNSAT 3157.19 2357.55 3006.19 20797.60
eq.atree.braun.13.unsat UNSAT 7117.39 8504.50 8158.85 —
gss-24-s100 SAT 1977.19 3449.55 2271.24 968.23
gss-26-s100 SAT 10844.22 — 6057.80 —
gss-32-s100 SAT — 16412.40 — —
gus-md5-14 UNSAT 14779.03 16264.37 16098.04 —
ndhf xits 09 UNSAT UNSAT — — 14793.78 —
rpoc xits 09 UNSAT UNSAT — — 12388.32 —
total-10-17-u UNSAT 4431.21 7198.23 5099.73 —

were solved by at least one solver but the best run time was over 1 hour. The results
are reported in Table 2. For comparison the table also reports the results for running 64
independent MINISAT solvers with 6 hour timeout and taking the minimum over the
solving times (the SD 64 column), and the competition results (SAT-COMP).

The results show again that the DPLL-based partition function with lookahead is
superior to the other partition functions, forming the fastest approach in almost half of
the instances. The approach is in all cases better than the approach using independent
MINISAT solvers. In this experiment, all three approaches are able to solve instances not
solved by the other approaches. In two cases the SD 64 approach is better than either the
VSIDS or lookahead-based scatter approach. The average run time of MINISAT seems
to be for both instances much higher than the minimum reported in the SD 64 column.
The table also reports a number of instances where the result of at least one solver in
SAT-COMP 2009 was better than any of the partition tree results. In these cases also the
MINISAT solver could not find a solution before the timeout. We could experimentally
find some more instances which turned out to be relatively easy for some SAT solver in
the competition but extremely challenging for our approach which is based on MINI-
SAT. These instances are presented in the bottom part of Table 2. The partition tree
approach treats SAT solvers as black boxes and it would be interesting to see how the
partition tree approach performs if the solver is changed.

7 Conclusions

This work studies central concepts in distributed solving of propositional satisfiability
problem (SAT) instances. We identify challenges of the commonly used strategies, sim-
ple distribution and plain partitioning [12], and show that the partition tree approach
combines the two strategies by avoiding some of their inherent problems.

We develop three partition functions and use the partition tree approach to study
their efficiency. The experimental results show that the partition tree approach performs
well with these functions, being much more powerful in practice than the initial results

Table 2. Wall-clock times in seconds for the partition tree approaches, simple distribution and
the SAT-COMP results

Name Type LA DPLL LA scatter VSIDS scatter SD 64 SAT-COMP

9dlx vliw at b iq7 UNSAT — — — — 6836.20
AProVE07-01 UNSAT 1465.22 1322.04 2451.36 20230.30 6816.94
dated-5-13-u UNSAT 3881.60 4745.52 4563.15 — 8005.27
gss-22-s100 SAT 830.77 1151.13 4246.25 2280.82 4326.83
gss-27-s100 SAT — — 9156.71 — 7132.69
gus-md5-11 UNSAT 1190.28 2077.99 2092.54 5057.39 4518.06
maxor128 UNSAT — — — — 7131.52
maxxor064 UNSAT — — — — 5162.75
minandmaxor128 UNSAT — — — — 5143.44
mod4block 3vars 7gates UNSAT 1740.17 1755.47 2326.02 — 4109.89
new-difficult-26-243-24-70 SAT 3260.86 8887.61 5087.98 3311.62 4440.72
rbcl xits 08 UNSAT UNSAT 4557.86 2390.50 3695.97 — 3892.92
sgen1-unsat-109-100 UNSAT 1363.14 3000.48 4196.36 14675.60 4045.49
UTI-20-10p1 SAT — 7097.74 — — 6289.06
UR-20-10p1 SAT 4463.24 — — — 8766.23

Challenge instances for MINISAT

countbitsarray02 32 UNSAT 1746.29 3003.50 997.84 2504.93 834.519
vange-col-abb313GPIA-9-c SAT — — — — 445.09
velev-pipe-uns-1.0-8 UNSAT — — — — 307.48
vmpc 34 SAT 12452.59 1350.17 1479.62 2796.19 35.347
simon-s02b-k2f-gr-rcs-w8 UNSAT 3816.20 3106.70 14756.10 — 6.40

in [13] suggest. The partition tree approach solves several instances which were not
solved in the SAT-COMP 2009 solver competition. While we could find other instances
that were solved in the competition and we failed to solve, our results suggest that
also the simple distribution approach fails to solve these instances. We conclude that
the partition tree approach genuinely improves the efficiency of the solver, and similar
results cannot be achieved simply by running randomized SAT solvers in parallel. The
results raise an interesting future question on how other solvers would benefit from the
approach.

References

1. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Strategies for solving SAT in Grids by random-
ized search. In: Proc. AISC’08. Volume 5144 of LNAI., Springer (2008) 125–140

2. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-
tion Processing Letters 47(4) (1993) 173–180

3. Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: Proc. STACS’94.
Volume 775 of LNCS., Springer (1994) 463–474

4. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational
problems. Science 275(5296) (1997) 51–54

5. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2) (2001) 43–
62

6. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-based
randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation
6 (2009) 223–244

7. Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel backtrack-
ing. In: Proc. Supercomputing ’87. Volume 297 of LNCS., Springer (1988) 985–993

8. Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing.
Annals of Mathematics and Artificial Intelligence 17(4–3) (1996) 381–400

9. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its
application to quasigroup problems. Journal of Symbolic Computation 21(4) (1996) 543–
560

10. Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class
of SAT solvers. Journal of Automated Reasoning 34(1) (2005) 73–101

11. Michel, L., See, A., van Hentenryck, P.: Parallelizing constraint programs transparently. In:
Proc. CP’07. Volume 4741 of LNCS., Springer (2007) 514–528

12. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning the search space of a randomized
search. In: Proc. AI*IA’09. Volume 5883 of LNAI., Springer (2009) 243–252

13. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids.
In: Proc. SAT’06. Volume 4121 of LNCS., Springer (2006) 430–435

14. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009) 155–
184

15. Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with
distributed dynamic learning. Parallel Computing 29(7) (2003) 969–994

16. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proc. SAT 2001.
Volume 9 of Electronic Notes in Discrete Mathematics., Elsevier (2001) 59–80

17. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

18. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48(5) (1999) 506–521

19. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in
boolean satisfiability solver. In: Proc. ICCAD’01, ACM (2001) 279–285

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT’03. Volume 2919 of LNCS.,
Springer (2004) 502–518

21. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead techniques in a
modern SAT solver. In: Proc. CP’03. Volume 2833 of LNCS., Springer (2003) 842–846

