
Strategies for Solving SAT in Grids by Randomized
Search

Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä

Helsinki University of Technology TKK
Department of Information and Computer Science

email: {Antti.Hyvarinen,Tommi.Junttila,Ilkka.Niemela}@tkk.fi

Abstract. Grid computing offers a promising approach to solving challenging
computational problems in an environment consisting of a large number of eas-
ily accessible resources. In this paper we develop strategies for solving collec-
tions of hard instances of the propositional satisfiabilityproblem (SAT) with a
randomized SAT solver run in a Grid. We study alternative strategies by using
a simulation framework which is composed of (i) a grid model capturing the
communication and management delays, and (ii) run-time distributions of a ran-
domized solver, obtained by running a state-of-the-art SATsolver on a collection
of hard instances. The results are experimentally validated in a production level
Grid. When solving a single hard SAT instance, the results show that in practice
only a relatively small amount of parallelism can be efficiently used; the speedup
obtained by increasing parallelism thereafter is negligible. This observation leads
to a novel strategy of using grid to solve collections of hardinstances. Instead of
solving instances one-by-one, the strategy aims at decreasing the overall solution
time by applying an alternating distribution schedule.

1 Introduction

This paper considers techniques for solving challenging instances of thepropositional
satisfiability(SAT) problem with the aid of computationalGrids. Such techniques are
of particular interest firstly due to the increasing use of SAT based technologies in com-
puter aided verification and other application areas, and secondly since Grids are nowa-
days offering large quantities of affordable computing power. The first phenomenon is a
consequence of recent developments in SAT solvers which have dramatically improved
the computational power of the solvers, whereas the second seems to be a major trend
in high-performance computing.

Our goal in this paper is to develop techniques for exploiting the parallel computing
resources provided by a Grid in a way that allows us to use state-of-the-art SAT solvers
with no or only minor modifications. To do this, we use theSimple Distributed SAT
(SDSAT) framework, whose basic version consists of simply runningN randomized
SAT solversin parallel until one of them finds the solution. We consider extensions
of the basic version obtained by incorporating differentrestart strategiesand study
their effects in a specifically built simulation environment. The simulation environment
comprises of (i) a Grid model taking into account the inherent communication and
management delays, and (ii) run time distributions of a state-of-the-art randomized SAT

solver when applied on several hard SAT instances. We also validate some of the results
and parameters of our Grid model by using a production level Grid called NorduGrid
(seehttp://www.nordugrid.org/),

The key idea we exploit is that a complete SAT solver can be turned into aran-
domized search procedure(RSP) in a natural way by slightly modifying the heuristic
function used in the solver. For example, MiniSAT [1] 1.14 makes by default 2% of its
heuristic choices pseudo-randomly; thus a natural modification to turn MiniSAT into a
RSP is to seed its pseudo-random number generator differently for each run. Such a
randomized search procedure, when provided with an inputx, is guaranteed to give a
correct resultRSP(x) when the computation of the procedure finishes. However, due
to the randomization, the time required for computingRSP(x) is not known in advance
but is described by a random variableTRSP(x). The random variableTRSP(x), and thus
the run time ofRSP(x), is completely characterized by its cumulativerun time distri-
bution function,qRSP(x)(t), giving the probability that the computation will terminate
before or at timet. This randomization of a SAT solver may sound counter-intuitive as
one usually tries to remove all non-determinism in order to make runs reproducible to
ease benchmarking and debugging. However, in the SDSAT framework as well as when
employing restart strategies to aRSP (discussed below), the goal is to exploit theshort
runs(if any) in the distribution to decrease theexpected run timeof the overall system.

The expected run time of a randomized search procedure can often be substan-
tially reduced by periodically restarting the procedure [2]. For example, assume that
TRSP(x) = 1s with probability 0.3 andTRSP(x) = 10s with probability 0.7. Then the
expected run timeE(TRSP(x)) is 0.3 · 1s + 0.7 · 10s = 7.3s. If theRSP is modified
so that it restarts itself immediately after timet = 1s, the expected run time becomes
∑

∞

i=1 0.7i−1 · 0.3i · is ≈ 3.3s. Such a modification, where the procedure is forced to
start from the beginning after runningt1 seconds, then aftert2 seconds and so forth, is
called arestart strategyS = (t1, t2, . . .) and the timeti the i:th restart limit. When a
restart strategy is employed to anRSP, the result is a randomizedalgorithm that also
has a run time distribution and an expected run time. The restart strategy employed in
the previous example is a special case of afixed restart strategySt = (t, t, . . .) and the
algorithm corresponding to the fixed restart strategySt employed onRSP is denoted by
FIXEDt,RSP (or simply FIXEDt whenRSP is implicitly known). Fixed restart strategies
are important in our analysis, since ifqRSP(x)(t) is known, thent can be chosen so that
the expected run time of FIXEDt(x) is the minimal among all the algorithms obtainable
from RSP(x) by employinganyrestart strategy [3]. However, in practiceqRSP(x)(t) is
not known: obtaining information aboutqRSP(x)(t) in general requires solvingRSP(x),
which is the overall goal in many applications. To circumvent this problem, severaluni-
versalrestart strategies have been suggested [3,4]: they do not depend on the instance
x and let the restart limits grow arbitrary large in order to preserve the completeness of
the algorithm.

We first study the effect of applying several restart strategies on our benchmark
set of hard SAT instances in the sequential setting. The results show that there are
instances on which the optimal fixed restart strategy provides a substantial reduction
in the expected run time. The two universal strategies considered can also reduce the
expected run time on some instances but result in a bad performance on some others.

The reason is that the universal strategies can spend too much time in trying to find a
short run; when an instance has none, all that time is wasted.

Based on results in the sequential case, we consider ways to parallelize restart strate-
gies in the SDSAT framework and use our simulation model to benchmark them. The
results give rise to two major observations. First, parallelism seems to be an effective
“luck enhancer”; when randomized solvers are run in parallel, the probability that one of
them finds a short run grows quite quickly. This seems to render elaborate restart strate-
gies practically useless in the parallel setting as the simple approach with no restarts
tends to provide quite good results consistently. The second observation is that only a
relatively small amount of parallelism seems to be effectively exploitable; after a certain
amount, adding more parallel solvers does not seem to give any significant performance
gain. There seems to be two reasons for this: (i) the probability that a short run is found
is already quite high with a smallish number of parallel solvers, and (ii) the delays in
the Grid environment reduce the effect of restart strategies.

The above results suggest that when solving aset of instances, a good speedup is not
obtained by solving them one-by-one in a Grid. Instead, the instances should be solved
in parallel by reserving a smallish amount of computing resources for each instance. We
validate this idea in Sect. 6 both with the simulation model and by using a production
level Grid.
Related Work. Techniques for learning or adapting restart strategies to improve the ag-
gregate performance on a given collection of instances are studied, e.g., in [5,6,7,8,9].
A closely related topic is the use of algorithm portfolios [10,11]. The idea is combined
with clause learning in [12]. Parallel restart strategies are studied in [13], without con-
sidering the practical limitations of a Grid. Guiding path [14,15] is a technique for
distributed SAT solving based on dynamic partitioning of the problem with new as-
sumptions. Such methods combine also with clause learning [16]. The techniques in
grid-like environments have been investigated, for example, in [17,18,19,20]. The guid-
ing path method is further developed in [21]. A different algorithm is presented in [22].

In this paper we extend previous work in three crucial respects: (i) We take into
account the limitations of practical Grid environments which involve strict resource
bounds and significant latencies due to communication and job management. (ii) We
require minimal changes to the SAT solvers, and the changes are almost totally inde-
pendent of the underlying solver technology. (iii) We use realistic run time distributions
of the randomized search procedure obtained experimentally by running a state-of-the-
art SAT solver on a representative collection of SAT instances from the application
domain.

2 Grid Environment

The paper develops techniques for using loosely coupled, widely distributed Grid envi-
ronments for solving challenging SAT problems. From an abstract point of view a Grid
environment can be seen as consisting of a collection of computing resources called
primitive computing elements(PCEs). A PCE can execute a sequential program given
its input, hence, in practice corresponding to a CPU. A user can submit ajob (a sequen-

tial program together with its input) to the Grid which executes it on one of its PCEs
and gives results back to the user.

Next we briefly described three key characteristics which play an important role
when developing Grid applications and the algorithms in this paper: (i) jobs in Grids
experience significant delays but (ii) the run time of a job typically affects the effect of
delays and (iii) communication between jobs is very limitedwhen compared to tradi-
tional multi-processor environments such as clusters.

(i) The entry point of a Grid environment is a set of queues accepting jobs. Each
queue is associated with a set ofcomputing elements(CEs) corresponding to a set of
CPUs. A job starts executing when the queue system assigns the job to a CE. Sev-
eral causes of delays can be identified. Firstly, the time required for the job to reach a
CE after submission to the corresponding queue depends on the amount and types of
previously submitted jobs still in the queue, and the remaining run times of the jobs cur-
rently executing in the CEs. Secondly, if the submission of ajob involves transmitting
a large amount of data, the amount of network bandwidth may greatly affect the de-
lays [23]. Thirdly, the run time of a job in a CE depends on the load potentially placed
by other jobs on the neighboring CPUs, as well as the types of the CPUs in the CE.
Finally, it is possible that jobs disappear due to maintenance breaks or various random
faults. Efficient job management in Grids is a non-trivial task and is typically han-
dled by special tools. In those experiments of this paper that are run in NorduGrid, we
use a fault-tolerant and efficient job management system called the Grid Job Manager
(GridJM) [24].

(ii) Note that the different delays above seem to suggest that a job with limited
run time could experience shorter delays. For instance, most queue systems support
a mechanism calledreservation, where a complicated task requesting a CE of several
CPUs will force the queue system to start to reserve CPUs. In this case, no new jobs
requesting a CE will be assigned from the queue, unless the run time of the job is
short enough to finish before the time expected for the requested CE of several CPUs
to become available. On the other hand, since the delays are experienced by each job,
it would be preferable to submit sufficiently long running jobs so that the delays do
not dominate the total run time. As a reasonable compromise,in the experiments in
NorduGrid we use jobs where the run time is limited to one hour.

(iii) Since a Grid can be formed by several independent but collaborating organi-
zations which decide to share the computing resources, it iscommon that two jobs
submitted to the Grid are not guaranteed to be able to communicate with each other at
all. For example, such limitations are typically posed by the networks of the organiza-
tions in NorduGrid used in the experiments and, therefore, in the algorithms developed
in the paper we assume that jobs cannot communicate directlywith each other.

3 Simulation Environment

Realistic Grid systems pose certain challenges for exact algorithm benchmarking, since
both the delays and the run times vary, rendering the reproduction of results difficult. To
overcome these challenges, we construct a simple Grid modelbased on the following
components:

t

d(N)

dq(N)

N

︸ ︷︷ ︸

Tc

Fig. 1. A time line of an execution in Grid representing the numberN of PCEs, queue delay
dq(N), and the submit delayd(N). In the example, the first job has executed the maximum
allowed timeTc on a PCE.

(1) A unique central processM initiating new and monitoring old jobs, and a set ofN

PCEs receiving jobs from and reporting the results toM .
(2) An initiation delay describing the amount of time required to submit a job to the

Grid. The delayd(N) can be modeled as a random variable depending on the num-
ber of PCEs employed. The delay is executed byM and results in a bottleneck
when initiating new computations.

(3) A queue delay is the sum of two components: the time spent queuing to the PCE,
and the time spent receiving the results after the job has finished. The delaydq(N)
can be modeled as a random variable depending on the number ofPCEs employed.
The delay is experienced by the job and does not form a bottleneck for submission.

(4) A maximum resource limitTc describing the amount of time a PCE is allowed to
execute before terminating a job and becoming ready to accept a new job.

We believe that this system provides a realistic model for distributed computing in
Grids. (1) A central process managing jobs provides a natural synchronization mecha-
nism. (2&3) Most such systems have a delay associated with the synchronization, and
specifically shared distributed environments require certain communication in selecting
the PCE to be employed. (4) Batch systems such as Grids usually limit the resources
available to a single job, for example, to provide fairness in scheduling. The model does
not directly consider the effect of various CPU models and the load on the CPUs on the
run time. Such effects can be obtained by adjusting the queuedelay and the resource
limit accordingly.

We may study an application submitting jobs to the Grid through a central process
M as a time line, illustrated in Fig. 1. The time advances to theright in the figure
and the abstract PCEs can be seen asN bands placed on top of each other. The filled
rectangles represent jobs, and the dark areas inside the jobs represents the CPU time, as
opposed to the queuing delay. The time in the figure starts when the first job (the long
rectangle at the bottom of the figure) is placed into a queue ofa PCE. The second job
is submitted immediately after this, and after the submission delayd(N), reaches the
queue. Meanwhile, the first job has reached the PCE, is executed in it, and finally the
result is reported back to the central process after some queue delay.

When performing the actual simulations, we make the following simplifying as-
sumptions on the model:

– submit delayd(N) = d is constant for every PCE and does not depend onN , and
– queue delaydq(N) = dq is constant for every PCE and does not depend onN .

If the effect of the number of PCEs is taken into account, the delays will increase since
in practice the jobs will interfere with each other. This means that using the simplifying
assumptions the resulting run time is underestimated and this error increases with the
number of PCEs employed. Hence, the model with the simplifying assumptions gives
overly optimistic results on speedups for larger numbers ofPCEs which needs to be
taken into consideration when evaluating the results. Nevertheless, these assumptions
allow us to study the effect of delays in a simple yet reasonably realistic environment.

Run time distributions. As a representative collection of SAT instances we use a set of
benchmarks from the SAT 2007 Competition (seehttp://www.satcompetition.
org/2007/). The instances, with the full name, abbreviated name, and satisfiability,
are listed below.

– mod2-rand3bip-sat-250-3.shuffled-as.sat05-2220,mod2-250, satisfiable.
– mod2-rand3bip-sat-280-1.sat05-2263.reshuffled-07,mod2-280, satisfiable.
– 999999000001nc.shuffled-as.sat05-446,99999900, unsatisfiable.
– clqcolor-10-07-09.shuffled-as.sat05-1258,clqcolor, unsatisfiable.
– cube-11-h14,cube, satisfiable.
– dated-10-13-s,dated, satisfiable.
– mizh-md5-48-5,mizh-md5, satisfiable.
– vmpc_28.shuffled-as.sat05-1957,vmpc_28, satisfiable.
– AProVE07-16,AProVE07, unsatisfiable.

The set covers both industrial and hand-crafted instances,having typical run time of
thousands of seconds for a state-of-the-art SAT solver.

The SAT solver run time distributions are approximated by using a collection of
samples for each instance. The samples are obtained by 100 separate randomized runs
of a state-of-the-art SAT solver (MiniSAT version 1.14 withits pseudo-random number
generator initialized differently for each run). Based on the randomized runs, we con-
struct a distribution of run times with linear interpolation between the sample points,
assuming probability 0 for runs shorter than the minimum sample and for runs longer
than the maximum sample. We also studied the case with discrete distribution, but this
did not significantly affect our results.

Table 1documents for each instance the abbreviated names and the SAT solver run
times for minimum, fifth percentile, median, 95th percentile and maximum of the sam-
ples. We also provide the average of the samples, i.e., an approximation of the expected
run time of the solver on the instance, in theRSP column. The columns OPTIMUM,
t∗, LUBY and WALSH will be explained in Sections 4 and 5. At this point, of particu-
lar interest are the large dynamics in certain distributions, such asvmpc_28 with over
19000-fold difference between minimum and maximum run time. We also provide the
cumulative run time distributions for two of the test instances in Fig. 2. The distribution
is the increasing graphq(t). The horizontal lines in Figures 2(b) and 2(d) indicate the
maximum and minimum run times of the instance and the vertical line indicates the

Table 1.Characteristics of the run times for the test instances

Instance Min 5% Median 95% MaxRSP OPTIMUM t∗ LUBY WALSH

mod2-250 40.16 97.16 1210 2675 3088 1181 1181 ∞ 2715 1510
mod2-280 9.184 55.71 1732 6611 7775 2382 918.4 9.184 1274 1718
99999900 1072 1204 2056 3101 3725 2065 2065 ∞ 25070 4560
clqcolor 1198 1300 1922 2955 4329 1900 1900 ∞ 23060 4158
cube 2629 2896 4708 7936 10049 4832 4832 ∞ 106200 18500
dated 10.09 46.53 803.0 12550 37930 2279 716.1 29.08 901.5 993.3
mizh-md5 49.76 128.7 861.7 5784 9489 1660 1236 899.3 3403 1471
vmpc_28 0.1370 3.905 394.7 1730 2720 623.3 12.71 0.2560 137.4 279.6
AProVE07 879.4 1071 1471 2713 2855 1564 1564 ∞ 17330 3381

maximum run time on thex-axis, i.e., the value oft whereq(t) = 1. The remaining
graphs will be explained in Sections 4 and 5.

It can be argued that 100 samples is not enough to give us a realistic view of the
run time distribution of an instance. In order to estimate the magnitude of the error
introduced to the finite distribution, we compare the distributions ofcube with 100
samples and 1000 samples. The results are reported in the first two rows of Table 2.
Even though the minimum run time decreases and the maximum run time increases, the
distribution seems to remain relatively stable when increasing the number of samples.
To have an impression on how, for example, a short run would affect the results, we
inserted an artificial short sample and constructed the corresponding distribution. The
resulting distribution has the same dynamics as the distribution ofvmpc_28.

4 Restart Strategies in a Sequential Setting

Given a randomized search procedureRSP and a problem instancex, it is possible to
associate a run time distributionqRSP(x)(t) with the run time ofRSP(x). Employing a
restart strategyS onRSP results in a new algorithm with a potentially different run time
distribution. In this section we discuss the effect of usingseveral such algorithms on our
collection of SAT instances by comparing the run time distributionsqRSP(x)(t) with the
run time distributions of the new algorithms. We use the following restart strategies and
corresponding algorithms:

– OPTIMUM. The fixed restart strategySt and the corresponding algorithm FIXEDt

mentioned in Sect. 1 have the property that there is a restartlimit t∗ which is optimal

Table 2. Comparison of the distributions for cube with 100 samples (cube100), 1000 samples
(cube1000), and a modified distribution with one artificial short run inserted (cube1001m).

Instance Min 5% Median 95% MaxRSP OPTIMUM t∗ LUBY WALSH

cube100 2629 2896 4661 7617 8821 4832 4832∞ 106200 18500
cube1000 1441 2990 4914 7664 14051 5067 5067∞ 97360 31510
cube1001m 0.7352 2990 4914 7647 14051 5061 725.9 0.735 5101 30280

0

0.2

0.4

0.6

0.8

1

700060005000400030002000

q
(t

im
e)

t (s)

q(t)
q8(t)

(a) Run time distributions forclqcolor

1000

10000

100000

1e+06

700060005000400030002000

t(
s)

t (s)

E(TFIXED t
)

E(TFIXED
p

t
)

(b) Expected run times forclqcolor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

q
(t

im
e)

t (s)

q(t)
q8(t)

(c) Run time distributions forvmpc_28

0.1

1

10

100

1000

10000

1 10 100 1000

t(
s)

t (s)

E(TFIXED t
)

E(TFIXED
p

t
)

(d) Expected run times forvmpc_28

Fig. 2.Run time distributions and expected run times for the instancesclqcolor andvmpc_28

for a givenRSP and instancex [3]. If the cumulative distribution functionq(t) of
the instance is known, the optimal restart limitt∗ may be determined by minimizing
the expected run timeE(TFIXED t(x)) as a function of the restart limitt,

E(TFIXED t(x)) =
t −

∫ t

t′=0 q(t′)dt′

q(t)
, (1)

i.e.,t∗ = argmin(E(TFIXED t(x))). Determiningt∗ can be done in our simulation en-
vironment but not usually in practice as the distributionq(t) is typically not known.

– LUBY. Luby et al. [3] define the universal strategySL = (l(1), l(2), . . .) where

l(i) =

{
2k−1, if i = 2k − 1, k ∈ N

l(i − 2k−1 + 1), if 2k−1 ≤ i < 2k − 1.

When the strategySL is employed on aRSP, the corresponding algorithm is called
LUBY. In [3] it is further shown that the expected run time of LUBY(x) is within a
logarithmic factor from the expected run time of OPTIMUM(x) independently ofx.

– WALSH. Another universal strategy is the strategySW = (w(1), w(2), . . .), where
w(i) = 21.2i, presented in [4]. The strategy differs fromSL, for example, in the
rate of growth. Clearly, the restart limits inSW grow exponentially, whereasSL

grows only linearly with respect toi. The corresponding algorithm will be referred
to as WALSH.

Table 1 compares the three algorithms against the run time ofRSP. ColumnRSP re-
ports the expected run time ofRSP(x) for different instancesx. Using the run time
distribution qRSP(x)(t), we computed the optimum restart limitt∗ for each instance
minimizing Eq. (1). The resulting expected run time is reported on column OPTIMUM

and the corresponding restart limit in columnt∗. The value∞ is used to mark the
cases when run times for OPTIMUM(x) andRSP(x) are equal. In this collection of in-
stances, in five cases out of nine the expected run time of OPTIMUM(x) is equal to that
of RSP(x). Some of the satisfiable instances, though not all, seem to profit from em-
ploying a fixed restart strategy with small restart limit. Asan example, the expected run
time for the algorithm FIXEDt with inputvmpc_28, is shown in Fig. 2(d) as a function
of the restart limitt (graph labeledE(TFIXED t

)). In other cases, the expected run times
of algorithms with larger restart limits compare favorablyto those with smaller restart
limits. An example is shown in Fig. 2(b).

The results for the two universal strategies are shown in columns LUBY and WALSH

of Table 1. Based on the results, it seems that in most cases the instances having
E(TOPTIMUM (x)) 6= E(TRSP(x)) also profit of more complex strategies. We also note
that LUBY performs very badly on many instances with a high minimum runtime. This
is a consequence of the slow growth of the restart limit in thestrategySL. In general,
the algorithm WALSH seems to offer a relatively robust approach, resulting in good
speedup where such speedup would be obtainable with FIXEDt∗ given thatt∗ is known,
and still performing usually well in cases whereE(TOPTIMUM (x)) = E(TRSP(x)). This
is a slightly surprising result, since to our knowledge no optimality result exists for the
strategySW.

5 Parallel Solving of a Single Instance

In the previous section we discussed several restart strategies and resulting sequential
algorithms when the strategies are employed to aRSP. In this section we develop a
number ofparallel algorithmsfor Grid environments based on the restart strategies.
Here we consider a Grid environment as an efficient distributed system for running jobs.
Hence, the algorithmic design boils down to approaches to constructing a sequence of
jobsj1, j2, . . . to be submitted to the Grid for execution based on aRSP and a restart
strategy. Since each job has a resource limitTc limiting the execution time, we employ
a finite restart strategy(discussed below) on theRSP which guarantees that the run
time of the resulting algorithm is not more thanTc. Hence, each jobji consists of the
RSP, the inputx to be solved and a finite restart strategy.

A finite restart strategyS = (t1, t2, . . . , tn) is a finite sequence of restart limits
which, when employed on aRSP, will terminate the resulting algorithm unless a solu-
tion is found by the end of the restart limittn. Thelengthof the finite restart strategyS,
denoted by|S|, is n. Given a restart strategyS = (t1, t2, . . .) and a resource limitTc,
we define an operatorfinite(S) for constructing finite restart strategies fromS as

finite(S) =

{
(Tc) if t1 > Tc

(t1, t2, . . . , tm) wherem maximizes
∑m

i=1 ti ≤ Tc otherwise.

For any restart strategyS, the run time of the algorithm obtained by employingfinite(S)
on aRSP is less than or equal toTc.

The most intuitive way of constructing jobs from a restart strategyS = (t1, t2, . . .)
is to assign the jobji the restart strategy(ti) for i = 1, 2, In practice this approach
performs very badly due to the high delays in actual Grid environments. Therefore, the
parallel algorithms we propose are based on two generalschemesfor constructing a
sequence of jobs, given a restart strategyS.

– Straightforward scheme. Given a restart strategyS for constructing jobs we define
a sequence of restart strategiesS1, S2, . . . in the following way: letS1 = S and
given a strategySi, the restart strategySi+1 is constructed fromSi by removing
the first|finite(Si)| restart limits fromSi. Given an environment withN PCEs, in
the straightforward scheme jobs are constructed from the sequenceS1, S2, . . . by
assigning the restart strategyfinite(S1) for the jobsj1, . . . , jN , thenfinite(S2) for
the jobsjN+1, . . . , j2N and so forth. This strategy is discussed in [13].

– Faithful scheme. In this scheme given a restart strategyS we construct the sequence
S1, S2, . . . as above and then assign the jobj1 the restart strategyfinite(S1), the
job j2 the restart strategyfinite(S2), and so forth.

Parallel Algorithms. Given the randomized search procedure and the distributed envi-
ronment, the parallel algorithm is uniquely determined by the used scheme (introduced
above) and the restart strategy. Furthermore, for a fixed restart strategy, the straightfor-
ward and faithful schemes result in the same parallel restart strategy, and thus the same
algorithm. We will discuss six parallel algorithms:

– Themaximum parallel algorithmFIXED
p
Tc

is formed from the fixed restart strategy
STc and either straightforward or faithful scheme.

– The optimal parallel algorithmFIXED
p
t∗ is formed by finding a valuet∗ which

minimizes the parallel run time distribution

E(TFIXED
p

t (x)) =
t −

∫ t

t′=1(1 − (1 − q(t′))N)dt′

1 − (1 − q(t))N
(2)

for RSP(x) with the run time distributionq(t). Equation (2) is obtained from
Eq. (1) by substitutingq(t) with the corresponding parallel distribution1 − (1 −
q(t))N . However, as shown in [13], there are run time distributionsfor which
FIXED

p
t∗ does not result in minimum expected run time over all parallel algorithms.

– Thefaithful parallel Luby and Walsh algorithmsLUBY-Fp and WALSH-Fp are con-
structed by using the faithful scheme on the strategiesSL andSW, respectively.

– Thestraightforward parallel Luby and Walsh algorithmsLUBY-Sp and WALSH-Sp

are constructed by using the straightforward scheme on the strategiesSL andSW,
respectively.

Zero-Delay Parallel Environment. In this subsection we consider an idealized Grid
environment captured by the Grid model, where we set the delays d = dq = 0 and
the resource limitTc = 3600s. This provides us with a lower bound on the run times
achievable in more realistic Grid environments.

Table 3.Results for different strategies and the zero-delay parallel environment

Instance N FIXED
p

t∗ FIXED
p

Tc
LUBY-Sp WALSH-Sp LUBY-Fp WALSH-Fp

mod2-250 16 105.7 116.2 334.2 177.5 171.8 114.0
64 47.25 47.25 194.6 84.86 50.23 45.32

mod2-280 16 61.82 84.52 71.44 76.65 67.65 79.32
64 19.36 21.55 22.29 25.69 21.44 24.58

99999900 16 1219 1219 14657 2910 1620 1238
64 1097 1097 14530 2784 1213 1094

clqcolor 16 1293 1293 14730 2963 1553 1301
64 1223 1223 14660 2899 1287 1224

cube 16 2891 2891 33600 6777 8105 2996
64 2682 2682 33410 6570 3086 2687

dated 16 48.44 64.12 59.30 53.29 63.46 60.15
64 15.89 16.33 15.92 16.05 14.69 19.26

mizh-md5 16 133.8 133.8 525.8 116.6 162.1 125.4
64 73.23 73.23 259.2 126.1 84.53 81.76

vmpc_28 16 0.834 7.293 4.694 6.065 4.366 11.22
64 0.251 0.539 0.6507 0.7994 0.6550 0.5003

AProVE07 16 1049 1049 11040 2285 1299 1064
64 918.8 918.8 7823 1823 1056 915.4

We report the results for the maximum parallel algorithm in column FIXED
p
Tc

of
Table 3 for 16 and 64 PCEs. For comparison, we also report on the column FIXED

p
t∗

the results when using the optimal parallel algorithm, in which case we useTc = ∞.
The speedup is in most cases linear with respect to the added resources, and for

vmpc_28 even super-linear, for both FIXED
p
Tc

and FIXED
p
t∗ . For some instances, how-

ever, the speedup is negligible. It seems that there are certain distributions which do not
allow for speedup when parallelized in this manner after a certain amount of PCEs has
been reached. Two different examples of this phenomenon arecloser studied in Figures
2(b) and 2(d) forN = 1 andN = 8. The graphs labeledE(TFIXED

p

t
) in the figures are

the expected run times of the algorithm FIXED
p
t with the respective instance as a func-

tion of the restart limitt. In Fig 2(b), the run time of the algorithm FIXED
p
t with large

values oft is almost equal to that of the shortest sampled run (the lowerhorizontal line)
which can also be seen from the run time distribution of the algorithm FIXED

p
t when

N = 8, q8(t), in Fig 2(a). The situation is different in Fig 2(d), where the shortest run
is much shorter than the expected run also whenN = 8.

We also note that the difference between FIXED
p
Tc

and FIXED
p
t∗ becomes insignifi-

cant whenN increases. The intuitive explanation for this is that the benefit of aggressive
restarting can be obtained by running several solvers in parallel. The important conse-
quence of the phenomenon is that with a large number of PCEs, the significance of the
restart strategies decreases.

The remaining columns in Table 3 show the behavior of the strategiesSL andSW.
The results are obtained by simulating 100 runs of the parallel algorithms and reporting
the mean time required to find the solution. The columns LUBY-Sp and WALSH-Sp

correspond to the straightforward parallel restart strategy for SL andSW. This scheme

Table 4.Comparison of 64-PCESL andSW with f = 1.0s,f = 15.0s, andf = 100.0s

LUBY-Fp WALSH-Fp

Instance f = 1.0 f = 15.0 f = 100.0 f = 1.0 f = 15.0 f = 100.0

mod2-250 68.09 50.23 47.19 46.54 48.85 48.55
mod2-280 34.71 21.44 20.16 23.82 21.69 18.55
99999900 1372 1213 1166 1093 1096 1105
clqcolor 1345 1287 1262 1220 1224 1222
cube 3950 3086 2977 2696 2688 2677
dated 28.43 14.69 18.71 18.74 15.85 18.57
mizh-md5 98.35 84.53 74.76 82.65 72.48 79.45
vmpc_28 0.5140 0.6550 0.6560 0.4717 0.5401 0.4870
AProVE07 1088 1056 992.2 930.2 936.2 914.76

has the benefit that small restart limits are attempted often. However, especiallySL

suffers from the repeating of the short runs in cases where the smallest run time is high.
The results corresponding to the faithful scheme are reported in columns LUBY-Fp and
WALSH-Fp. In most cases the faithful scheme performs significantly better than the
straightforward scheme, and when this is not the case, the difference is relatively small.

To further enhance the strategiesSL andSW, we studied the effect of multiplying
the restart limits of the strategies by a constant factorf in Table 4 for 64 PCEs. Based
on these results, the factor does not seem to have a significant effect on the run times.
The runs in Table 3 (as in Table 5) are measured withf = 15.0.

We study the effect of a larger sample base similar to the casein Table 2 in the zero-
delay environment. The results are reported in Table 5. For this particular instance, the
strategy FIXED

p
t∗ is equal to the maximum strategy both when the amount of samples

is 100 and 1000. In this case, when the number of samples is increased, the expected
solving time decreases for most algorithms. There is no significant difference between
WALSH-Fp and FIXED

p
Tc

whereas LUBY-Fp suffers from a larger number of short un-
successful runs (even though not visible in Table 2, the distributions are significantly
different whent ≤ Tc; e.g.q(3600s) ≈ 0.24 in the 100 samples distribution but only
approximately0.14 in the 1000 samples case). Sincecube is a satisfiable instance, it
is possible that there is a short run time for the randomized SAT solver. Since the 1000
samples did not reveal a short run time, it might be that the run is extremely improb-
able. To study the effect of such a short successful run we modify the distribution of
cube to include a single short run. The resulting run times are given in the row la-

Table 5.Effect of additional samples on the zero-delay solving ofcube with 64 PCEs

Instance FIXED
p

t∗ FIXED
p

Tc
LUBY-Fp WALSH-Fp

cube100 2682 2682 3086 2687
cube1000 2364 2364 3760 2270
cube1001m 11.86 2175 969.8 2185

beledcube1001m. In this case, LUBY-Fp is better than FIXED
p
Tc

because of the higher
probability of finding the short run.

Non-Zero Delay Parallel Environment. The simulation results from the parallel en-
vironment with zero submission delay and zero queuing delayprovide some insight to
how the parallelization method based on randomizing algorithms can perform on the
benchmark set. However, realistic parallel environments in general, and Grid environ-
ments in particular, always include some overhead related to initializing the computa-
tions. As described in Sect. 3, we divide the delays into two categories: submit delayd
and queue delaydq. Typical values in NorduGrid ared = 12s anddq = 125s. However,
the two values seem to vary strongly. The simulated experiments are presented in Ta-
ble 6 under the title “large delay”. All results are obtainedby computing the mean run
time over 100 samples usingTc = 3600s for the jobs.

The results show that almost always the maximum parallel algorithm FIXED
p
Tc

out-
performs those based on universal restart strategies on these instances. It is worth noting
that increasing the number of PCEs four-fold brings next to nothing in speedup, a con-
sequence of the long queuing delays.

It is possible that the submission and queue delays are significantly shorter in, say,
some other Grid environments. We simulate the effect of smaller delays by using sub-
mission delayd = 5s and queue delaydq = 30s. The results are reported under the
caption “small delay”. Even though the strategiesSL andSW are now more compet-
itive, their effectiveness still suffers from the high delays and it can be argued that
the maximum timeout is a sufficient approximation of the optimum. The super-linear
speedup observed in zero-delay environment cannot be observed in either of the de-
layed environments. For certain instances, such as99999900 andcube, already a
smallish number of parallel runs suffices to find a short run from the samples. As a
result, obtainable speedup is small.

We confirm these results by repeating them for two instances in the NorduGrid Grid
environment. We select two instances which according to thesimulated results are il-
lustrative examples on the techniques used in parallel solving. The instancevmpc_28
shows super-linear speedup in simulations in zero-delay environments, but only a mod-
erate speedup in delayed environments using the techniqueswe have studied. The in-
stanceAProVE07, on the other hand, has a less dynamic distribution in the simulations
and yields no significant speedup at the transition from 16 to64 PCEs even in the zero-
delay environment. The results are presented in Table 7. Thesubmission delays seem
to be below the average delay of 12 seconds, but the results correspond approximately
to the simulated results. No speedup seems to be achieved when the number of PCEs is
increased.

6 Parallel Solving of a Set of Instances

In this section we propose an algorithm for solving a collection of SAT problems ef-
ficiently in a Grid environment based on the results on solving a single instance. The
results indicate that (i) an increase in the number of PCEs does not result in a corre-
sponding speedup when solving a single instance and (ii) fora large number of prob-

Table 6.Results for different strategies and delayed parallel environments. The two rows for each
instance correspond toN = 16 (top) andN = 64 (bottom)

small delay large delay

Instance FIXED
p

t∗ FIXED
p

Tc
LUBY-Fp WALSH-Fp FIXED

p

t∗ FIXED
p

Tc
LUBY-Fp WALSH-Fp

mod2-250 177.0 145.1 232.7 164.4 352.8 379.3 399.8 399.3
161.5 157.7 182.7 133.5 364.4 355.7 422.7 350.4

mod2-280 125.8 159.0 137.4 150.7 306.8 331.0 321.4 350.0
118.1 126.2 135.2 132.4 296.3 327.7 320.9 340.1

99999900 1242 1268 1672 1306 1431 1477 1984 1527
1208 1246 1401 1253 1432 1485 1756 1490

clqcolor 1340 1353 1455 1378 1506 1525 1846 1577
1328 1351 1448 1352 1508 1536 1777 1554

cube 2882 2960 9209 3067 3094 3117 9233 3195
2792 2840 3489 2842 3050 3121 4159 3145

dated 112.1 140.5 138.2 126.1 272.2 323.8 281.6 312.1
104.7 114.1 116.6 117.4 284.3 309.2 293.8 305.8

mizh-md5 181.4 190.4 268.7 199.4 352.6 391.2 445.0 395.3
190.4 186.3 208.5 195.0 379.8 385.2 464.8 392.0

vmpc_28 43.27 67.35 62.70 65.49 155.7 206.7 198.4 214.0
42.18 68.06 62.59 64.30 155.5 218.3 200.0 212.0

AProVE07 1073 1089 1313 1127 1262 1289 1569 1310
1073 1065 1205 1061 1292 1299 1568 1300

Table 7.Experimental results in Grid for selected instances. Reported is the average over 10 runs
using the strategySTc .

Instance PCEs Time d

vmpc_28 8 105.4 3.333
16 125.7 7.668
64 134.5 5.189

Instance PCEs Time d

AProVE07 8 1624 5.917
16 1574 9.714
64 1271 8.555

lems to solve, a good speedup is not obtained by using all the resources for solving
a single problem at a time, but rather by dedicating only a certain amount of PCEs
for a single problem and solving multiple problems simultaneously instead. These ob-
servations lead to the followinglocally-aided fair-share algorithm: Given a collection
of instances, the instances are sent for solving in a round-robin manner by using the
maximum parallel algorithm FIXED

p
Tc

. In addition, the problems are also solved lo-
cally at the same time using an algorithm similar to LUBY with the modified strategy
SL,C = (min{l(1), C}, min{l(2), C}, . . .), whereC is a maximum local run time con-
stant, in a round-robin manner.

We provide experimental evidence that the proposed algorithm is efficient in a real
Grid environment. For this experiment, we select 8 problemsfrom our benchmark set
of 9 problems and run them in parallel with 64 PCEs, reservingat most eight PCEs per
problem. This enables us to compare the results of this experiment against a strategy

where 64 PCEs are dedicated for a single instance at a time. Wefirst excludecube
from the set of instances, since this problem is in the limit of solvable problems within
3600 seconds in our Grid environment, having expected run time of 4708 seconds in the
simulation environment. The resulting run time for the fullinstance set is 1865 seconds.
The sum of the simulated run times for these instances from Table 6 is 5916 seconds.
This results in a speedup 3.17 compared to the strategy of using 64 PCEs per instance.
When these results are compared against a simple strategy ofrunning the problems on
a single PCE with no delays, the speedup computed from the results of Table 1 is 7.32.

However, we note that the results can be significantly worse if a difficult instance,
such ascube, is included in the set of problems to solve. We repeated the above ex-
periment with 10 repetitions, now using 72 PCEs, resource limit Tc = 7200 seconds
and includingcube to the set of problems to solve. This resulted in a speedup of 1.76
with average solving time of 5136 seconds in the Grid environment compared to the
expected solving time of 9037 seconds with long delays and 64PCEs in Table 6. When
these results are compared against a simple strategy of running the problems on a single
PCE with no delays, the speedup is 3.60.

7 Conclusions

In this paper we have developed techniques for solving collections of hard SAT instance
in a Grid using a randomized SAT solver. We have compared different approaches us-
ing a simulation framework consisting of a grid model capturing the communication
and management delays, and a representative collection of run-time distributions of a
randomized solver. The results are experimentally confirmed also in NorduGrid which
is a European-wide distributed production level Grid. Whensolving a single hard SAT
instance, the results show that in practice often (i) a relatively small number of parallel
jobs suffices to increase the probability of finding a short run in the distribution to a sig-
nificant level and (ii) the non-negligible delays in a Grid eliminate super linear speedups
that could be obtained in an ideal environment without any delays. Hence, attempts to
decrease the overall expected run time by using clever universal restart strategies or
by finding optimal restart limits do not lead to significant improvements compared to
using the resource limit implied by the Grid environment as the restart limit. These ob-
servations lead to a novel strategy of using Grid to solve collections of hard instances.
Instead of solving instances one-by-one, the strategy aimsat decreasing the overall so-
lution time by applying an alternating distribution schedule.

Acknowledgments.The authors wish to thank the anonymous reviewers for their valu-
able comments. The financial support of the Academy of Finland (projects 122399 and
112016), Helsinki Graduate School in Computer Science and Engineering, and Jenny
and Antti Wihuri Foundation is gratefully acknowledged.

References

1. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT2003. Volume 2919 of LNCS.,
Springer (2003) 502–518

2. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. J. Automated Reasoning 24(1/2) (2000) 67–100

3. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup ofLas Vegas algorithms. Inf.
Process. Lett47(4) (1993) 173–180

4. Walsh, T.: Search in a small world. In: IJCAI, Morgan Kaufmann (1999) 1172–1177
5. Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, B.: Dynamic restart policies. In:

AAAI/IAAI. (2002) 674–681
6. Ruan, Y., Horvitz, E., Kautz, H.A.: Restart policies withdependence among runs: A dynamic

programming approach. In: CP 2002, Proceedings. (2002) 573–586
7. Streeter, M., Golovin, D., Smith, S.F.: Restart schedules for ensembles of problem instances.

In: AAAI, AAAI Press (2007) 1204–1210
8. Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI. (2007)

2318–2323
9. Wu, H., van Beek, P.: On universal restart strategies for backtracking search. In: CP. Volume

4741 of LNCS., Springer (2007)
10. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence126(1-2) (2001) 43–62
11. Wu, H., van Beek, P.: On portfolios for backtracking search in the presence of deadlines. In:

ICTAI. (2007) 231–238
12. Inoue, K., et al.: A competitive and cooperative approach to propositional satisfiability.

Discrete Applied Mathematics154(16) (2006) 2291–2306
13. Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: STACS. Volume

775 of LNCS., Springer (1994) 463–474
14. Boehm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing.

Annals of Mathematics and Artificial Intelligence17(4-3) (1996) 381–400
15. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its

application to quasigroup problems. J. Symbolic Computation 21(4) (1996) 543–560
16. Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel multithreaded satisfiability solver: Design

and implementation. Electronic Notes in Theoretical Computer Science128(3) (2005) 75–90
17. Blochinger, W., Westje, W., Küchlin, W., Wedeniwski, S.: ZetaSAT – Boolean satisfiability

solving on desktop grids. In: CCGrid 2005, IEEE (2005) 1079–1086
18. Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class

of SAT solvers. Journal of Automated Reasoning34(1) (2005) 73–101
19. Sinz, C., Blochinger, W., Küchlin, W.: PaSAT — Parallel SAT-checking with lemma ex-

change: Implementation and applications. In: SAT 2001. Volume 9 of Electronic Notes in
Discrete Mathematics., Elsevier (2001) 12–13

20. Chrabakh, W., Wolski, R.: GridSAT: A chaff-based distributed SAT solver for the grid. In:
SC 2003, IEEE (2003)

21. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids.
In: SAT 2006. Volume 4121 of LNCS., Springer (2006) 430–435

22. Forman, S., Segre, A.: NAGSAT: A randomized, complete, parallel solver for 3-
SAT. In: SAT 2002. (2002) Online proceedings athttp://gauss.ececs.uc.edu/
Conferences/SAT2002/sat2002list.html.

23. Pitkanen, M.J., et al.: Using the grid for enhancing the performance of a medical image
search engine. In: CBMS 2008, IEEE (2008) Accepted for publication.

24. Hyvärinen, A.E.J.: GridJM a Computer Program.http://www.tcs.hut.fi/
~aehyvari/gridjm/.

