Strategies for Solving SAT in Grids by Randomized
Search

Antti E. J. Hyvarinen, Tommi Junttila, and llkka Niemela

Helsinki University of Technology TKK
Department of Information and Computer Science
email: {Antti.Hyvarinen, Tommi.Junttila,llkka.Niemé&l@tkKk.fi

Abstract. Grid computing offers a promising approach to solving avajing
computational problems in an environment consisting ofrgelaumber of eas-
ily accessible resources. In this paper we develop stegdgr solving collec-
tions of hard instances of the propositional satisfiabiitpblem (SAT) with a
randomized SAT solver run in a Grid. We study alternativatsgies by using
a simulation framework which is composed of (i) a grid modaptaring the
communication and management delays, and (ii) run-timtiloligions of a ran-
domized solver, obtained by running a state-of-the-art SéiVer on a collection
of hard instances. The results are experimentally valitiate production level
Grid. When solving a single hard SAT instance, the resultsvdhat in practice
only a relatively small amount of parallelism can be effitignsed; the speedup
obtained by increasing parallelism thereafter is negkgibhis observation leads
to a novel strategy of using grid to solve collections of hasglances. Instead of
solving instances one-by-one, the strategy aims at dengetee overall solution
time by applying an alternating distribution schedule.

1 Introduction

This paper considers techniques for solving challengistaimces of th@ropositional
satisfiability (SAT) problem with the aid of computation@lrids. Such techniques are
of particular interest firstly due to the increasing use of BaAsed technologies in com-
puter aided verification and other application areas, acdrally since Grids are nowa-
days offering large quantities of affordable computing pow he first phenomenonis a
consequence of recent developments in SAT solvers whiah dia@matically improved
the computational power of the solvers, whereas the seaemisto be a major trend
in high-performance computing.

Our goal in this paper is to develop techniques for explgithre parallel computing
resources provided by a Grid in a way that allows us to use-stiathe-art SAT solvers
with no or only minor modifications. To do this, we use tBenple Distributed SAT
(SDSAT) framework, whose basic version consists of simplyning N randomized
SAT solversn parallel until one of them finds the solution. We consideteasions
of the basic version obtained by incorporating differeggtart strategiesand study
their effects in a specifically built simulation environnb€rhe simulation environment
comprises of (i) a Grid model taking into account the inhémmmunication and
management delays, and (ii) run time distributions of aestditthe-art randomized SAT

solver when applied on several hard SAT instances. We al&tat@some of the results
and parameters of our Grid model by using a production leval Galled NorduGrid
(seehtt p: // ww. nor dugri d. org/),

The key idea we exploit is that a complete SAT solver can beewinto aran-
domized search procedu(®SP) in a natural way by slightly modifying the heuristic
function used in the solver. For example, MiniSAT [1] 1.14kasa by default 2% of its
heuristic choices pseudo-randomly; thus a natural modidic@o turn MiniSAT into a
RSP is to seed its pseudo-random number generator differeatlgdch run. Such a
randomized search procedure, when provided with an impigt guaranteed to give a
correct resulRSP(z) when the computation of the procedure finishes. However, due
to the randomization, the time required for compufit®P («) is not known in advance
but is described by a random varialilgsp ... The random variabl&zsp (., and thus
the run time ofRSP(x), is completely characterized by its cumulative time distri-
butionfunction, grsp(s)(t), giving the probability that the computation will termieat
before or at timé. This randomization of a SAT solver may sound counter-tivieias
one usually tries to remove all non-determinism in order ekenruns reproducible to
ease benchmarking and debugging. However, in the SDSATeframk as well as when
employing restart strategies td& P (discussed below), the goal is to exploit gteort
runs(if any) in the distribution to decrease tegpected run timef the overall system.

The expected run time of a randomized search procedure ¢an bé substan-
tially reduced by periodically restarting the procedurk fr example, assume that
Trsp(z) = 1s with probability 0.3 andrsp(,) = 10s with probability 0.7. Then the
expected run timé&(Trsp(,)) i 0.3 - 1s+ 0.7 - 10s = 7.3s. If the RSP is modified
so that it restarts itself immediately after time= 1s, the expected run time becomes
o2, 0.771.0.3% - is & 3.3s. Such a modification, where the procedure is forced to
start from the beginning after runnirg seconds, then aftés seconds and so forth, is
called arestart strategyS = (¢4, to,...) and the time; the i:threstart limit When a
restart strategy is employed to &SP, the result is a randomizeadgorithmthat also
has a run time distribution and an expected run time. Thanestrategy employed in
the previous example is a special case fiked restart strategy’ = (¢,¢,...) and the
algorithm corresponding to the fixed restart straté§gmployed oRSP is denoted by
FIXED: rgp (Or simply AXED; whenRSP is implicitly known). Fixed restart strategies
are importantin our analysis, sincejifsp(,)(t) is known, thert can be chosen so that
the expected run time ofikeD.(z) is the minimal among all the algorithms obtainable
from RSP(x) by employinganyrestart strategy [3]. However, in practiggsp . (t) is
not known: obtaining information abousp) (%) in general requires solvingSP (z),
which is the overall goal in many applications. To circumiéis problem, severaini-
versalrestart strategies have been suggested [3,4]: they do pehdeon the instance
x and let the restart limits grow arbitrary large in order teggrve the completeness of
the algorithm.

We first study the effect of applying several restart stige@n our benchmark
set of hard SAT instances in the sequential setting. Thetsesbow that there are
instances on which the optimal fixed restart strategy pewia substantial reduction
in the expected run time. The two universal strategies densi can also reduce the
expected run time on some instances but result in a bad peafare on some others.

The reason is that the universal strategies can spend tob time in trying to find a
short run; when an instance has none, all that time is wasted.

Based on results in the sequential case, we consider wagsabglize restart strate-
gies in the SDSAT framework and use our simulation model tochemark them. The
results give rise to two major observations. First, palialie seems to be an effective
“luck enhancer”; when randomized solvers are run in pdralie probability that one of
them finds a short run grows quite quickly. This seems to reelddorate restart strate-
gies practically useless in the parallel setting as the Igirapproach with no restarts
tends to provide quite good results consistently. The stodaservation is that only a
relatively small amount of parallelism seems to be eff@tyiexploitable; after a certain
amount, adding more parallel solvers does not seem to giwsignificant performance
gain. There seems to be two reasons for this: (i) the prabathibt a short run is found
is already quite high with a smallish number of parallel sody and (ii) the delays in
the Grid environment reduce the effect of restart strategie

The above results suggest that when solvisgtaf instances good speedup is not
obtained by solving them one-by-one in a Grid. Instead,iB&ainces should be solved
in parallel by reserving a smallish amount of computing veses for each instance. We
validate this idea in Sect. 6 both with the simulation modwl ay using a production
level Grid.

Related Work. Techniques for learning or adapting restart strategiempoove the ag-
gregate performance on a given collection of instancestackesl, e.g., in [5,6,7,8,9].
A closely related topic is the use of algorithm portfolio®[11]. The idea is combined
with clause learning in [12]. Parallel restart strategiesstudied in [13], without con-
sidering the practical limitations of a Grid. Guiding patt4[15] is a technique for
distributed SAT solving based on dynamic partitioning a froblem with new as-
sumptions. Such methods combine also with clause leardi@g The techniques in
grid-like environments have been investigated, for exapyipl[17,18,19,20]. The guid-
ing path method is further developed in [21]. A different@ithm is presented in [22].

In this paper we extend previous work in three crucial retpdd We take into
account the limitations of practical Grid environments ethinvolve strict resource
bounds and significant latencies due to communication andrjanagement. (ii) We
require minimal changes to the SAT solvers, and the changealaost totally inde-
pendent of the underlying solver technology. (iii) We usadistic run time distributions
of the randomized search procedure obtained experimgbtalunning a state-of-the-
art SAT solver on a representative collection of SAT inseanfrom the application
domain.

2 Grid Environment

The paper develops techniques for using loosely coupletglwdistributed Grid envi-
ronments for solving challenging SAT problems. From anralespoint of view a Grid
environment can be seen as consisting of a collection of atingpresources called
primitive computing elemen{®CEs). A PCE can execute a sequential program given
its input, hence, in practice corresponding to a CPU. A uaerstibmit gob (a sequen-

tial program together with its input) to the Grid which exexsiit on one of its PCEs
and gives results back to the user.

Next we briefly described three key characteristics whicty @n important role
when developing Grid applications and the algorithms is ffaper: (i) jobs in Grids
experience significant delays but (ii) the run time of a joi¢glly affects the effect of
delays and (iii) communication between jobs is very limitggen compared to tradi-
tional multi-processor environments such as clusters.

(i) The entry point of a Grid environment is a set of queuespting jobs. Each
queue is associated with a setaafmputing element&CESs) corresponding to a set of
CPUs. A job starts executing when the queue system assignglihto a CE. Sev-
eral causes of delays can be identified. Firstly, the timeired for the job to reach a
CE after submission to the corresponding queue dependsecentiount and types of
previously submitted jobs still in the queue, and the reimginun times of the jobs cur-
rently executing in the CEs. Secondly, if the submission pheainvolves transmitting
a large amount of data, the amount of network bandwidth megttyr affect the de-
lays [23]. Thirdly, the run time of a job in a CE depends on thexdl potentially placed
by other jobs on the neighboring CPUs, as well as the typeseofoPUs in the CE.
Finally, it is possible that jobs disappear due to mainteedreaks or various random
faults. Efficient job management in Grids is a non-trivisdkand is typically han-
dled by special tools. In those experiments of this paperaterun in NorduGrid, we
use a fault-tolerant and efficient job management systelacctiie Grid Job Manager
(GridJdM) [24].

(i) Note that the different delays above seem to suggestahjab with limited
run time could experience shorter delays. For instancet meosue systems support
a mechanism callegkservation where a complicated task requesting a CE of several
CPUs will force the queue system to start to reserve CPUsisncase, no new jobs
requesting a CE will be assigned from the queue, unless thaime of the job is
short enough to finish before the time expected for the reqde3SE of several CPUs
to become available. On the other hand, since the delaysxpegienced by each job,
it would be preferable to submit sufficiently long runnindpgoso that the delays do
not dominate the total run time. As a reasonable comproririsée experiments in
NorduGrid we use jobs where the run time is limited to one hour

(i) Since a Grid can be formed by several independent bilalsorating organi-
zations which decide to share the computing resources,corismon that two jobs
submitted to the Grid are not guaranteed to be able to comzatawith each other at
all. For example, such limitations are typically posed by tietworks of the organiza-
tions in NorduGrid used in the experiments and, thereforthe algorithms developed
in the paper we assume that jobs cannot communicate dingittlyeach other.

3 Simulation Environment

Realistic Grid systems pose certain challenges for exgotishm benchmarking, since
both the delays and the run times vary, rendering the reptamuof results difficult. To
overcome these challenges, we construct a simple Grid niadeld on the following
components:

Fig. 1. A time line of an execution in Grid representing the numbérnf PCEs, queue delay
dg(N), and the submit delay(N). In the example, the first job has executed the maximum
allowed timeT. on a PCE.

(1) A unique central proces¥ initiating new and monitoring old jobs, and a set’f
PCEs receiving jobs from and reporting the resultdfo

(2) An initiation delay describing the amount of time reguirto submit a job to the
Grid. The delayi(N) can be modeled as a random variable depending on the num-
ber of PCEs employed. The delay is executedMyand results in a bottleneck
when initiating new computations.

(3) A queue delay is the sum of two components: the time speeuiqg to the PCE,
and the time spent receiving the results after the job hashiél. The delay, (V)
can be modeled as a random variable depending on the numB&tsf employed.
The delay is experienced by the job and does not form a bettlefor submission.

(4) A maximum resource limif,. describing the amount of time a PCE is allowed to
execute before terminating a job and becoming ready to &ecegw job.

We believe that this system provides a realistic model fstrithiuted computing in
Grids. (1) A central process managing jobs provides a nidyrechronization mecha-
nism. (2&3) Most such systems have a delay associated watBythchronization, and
specifically shared distributed environments requireatetommunication in selecting
the PCE to be employed. (4) Batch systems such as Grids ydinaill the resources
available to a single job, for example, to provide fairnesscheduling. The model does
not directly consider the effect of various CPU models arddlad on the CPUs on the
run time. Such effects can be obtained by adjusting the qdelsay and the resource
limit accordingly.

We may study an application submitting jobs to the Grid tigtoa central process
M as a time line, illustrated in Fig. 1. The time advances tortgbt in the figure
and the abstract PCEs can be seeivdsands placed on top of each other. The filled
rectangles represent jobs, and the dark areas inside thegplesents the CPU time, as
opposed to the queuing delay. The time in the figure startswheefirst job (the long
rectangle at the bottom of the figure) is placed into a queweRCE. The second job
is submitted immediately after this, and after the subroissielayd(V), reaches the
queue. Meanwhile, the first job has reached the PCE, is ee@@uit, and finally the
result is reported back to the central process after someegiielay.

When performing the actual simulations, we make the follmasimplifying as-
sumptions on the model:

— submit delayd(N') = d is constant for every PCE and does not depend/oand
— queue delayl,(N) = d, is constant for every PCE and does not dependion

If the effect of the number of PCEs is taken into account, glaysb will increase since
in practice the jobs will interfere with each other. This mg#at using the simplifying
assumptions the resulting run time is underestimated aactthor increases with the
number of PCEs employed. Hence, the model with the simplifgssumptions gives
overly optimistic results on speedups for larger numberB@Es which needs to be
taken into consideration when evaluating the results. Negkess, these assumptions
allow us to study the effect of delays in a simple yet reastynaalistic environment.

Run time distributions. As arepresentative collection of SAT instances we use &dset o
benchmarks from the SAT 2007 Competition (eé¢ p: / / www. sat conpeti ti on.

or g/ 2007/). The instances, with the full name, abbreviated name, atisfiability,

are listed below.

mod2-rand3bip-sat-250-3.shuffled-as.sat05-288d2- 250, satisfiable.
mod2-rand3bip-sat-280-1.sat05-2263.reshuffled¥®d2- 280, satisfiable.
999999000001 nc.shuffled-as.sat05-880999900, unsatisfiable.
clgcolor-10-07-09.shuffled-as.sat05-126Bgcol or , unsatisfiable.
cube-11-h14c¢ube, satisfiable.

dated-10-13-gJat ed, satisfiable.

mizh-md5-48-5m zh- nd5, satisfiable.
vmpc_28.shuffled-as.sat05-195Tpc_ 28, satisfiable.

— AProVEOQ07-16 APr oVEQ7, unsatisfiable.

The set covers both industrial and hand-crafted instari@sng typical run time of
thousands of seconds for a state-of-the-art SAT solver.

The SAT solver run time distributions are approximated bngis collection of
samples for each instance. The samples are obtained by patgerandomized runs
of a state-of-the-art SAT solver (MiniSAT version 1.14 withpseudo-random number
generator initialized differently for each run). Based ba tandomized runs, we con-
struct a distribution of run times with linear interpolatibetween the sample points,
assuming probability O for runs shorter than the minimumglarmand for runs longer
than the maximum sample. We also studied the case with tésdigtribution, but this
did not significantly affect our results.

Table 1documents for each instance the abbreviated nardgb@®AT solver run
times for minimum, fifth percentile, median, 95th percenéihd maximum of the sam-
ples. We also provide the average of the samples, i.e., aoxipmation of the expected
run time of the solver on the instance, in tR8P column. The columns ©riMuMm,
t*, LuBy and WALSH will be explained in Sections 4 and 5. At this point, of pautic
lar interest are the large dynamics in certain distribigj@uch as npc_28 with over
19000-fold difference between minimum and maximum run titkle also provide the
cumulative run time distributions for two of the test instas in Fig. 2. The distribution
is the increasing grapdi¢). The horizontal lines in Figures 2(b) and 2(d) indicate the
maximum and minimum run times of the instance and the vétriiiva indicates the

Table 1.Characteristics of the run times for the test instances

Instance Min 5% Median 95% MaRSP OpPTIMUM t* LuBY WALSH

nod2- 250 40.16 97.16 1210 2675 3088 1181 1181 oo 2715 1510
nod2-280 9.184 55.71 1732 6611 7775 2382 918.4 9.184 1274 1718
99999900 1072 1204 2056 3101 3725 2065 2065 oo 25070 4560
clgcolor 1198 1300 1922 2955 4329 1900 1900 co 23060 4158
cube 2629 2896 4708 7936 10049 4832 4832 oo 106200 18500
dat ed 10.09 46.53 803.0 12550 37930 2279 716.1 29.08 901.5 993.3
m zh-nd5 49.76 128.7 861.7 5784 9489 1660 1236 899.3 3403 1471
vipc_28 0.1370 3.905 394.7 1730 2720 623.3 12.71 0.2560 137.4 279.6
AProVEO7 879.4 1071 1471 2713 2855 1564 1564 co 17330 3381

maximum run time on the-axis, i.e., the value of whereq(t) = 1. The remaining
graphs will be explained in Sections 4 and 5.

It can be argued that 100 samples is not enough to give usiatiealew of the
run time distribution of an instance. In order to estimate thagnitude of the error
introduced to the finite distribution, we compare the disttions ofcube with 100
samples and 1000 samples. The results are reported in thewfirsows of Table 2.
Even though the minimum run time decreases and the maximaimne increases, the
distribution seems to remain relatively stable when insirggathe number of samples.
To have an impression on how, for example, a short run wodé&tathe results, we
inserted an artificial short sample and constructed theesponding distribution. The
resulting distribution has the same dynamics as the digtoib of virpc_28.

4 Restart Strategies in a Sequential Setting

Given a randomized search procedRi&P and a problem instance it is possible to
associate a run time distributia®sp () with the run time ofRSP(x). Employing a
restart strategy on RSP results in a new algorithm with a potentially different rimeé
distribution. In this section we discuss the effect of usiegeral such algorithms on our
collection of SAT instances by comparing the run time digttionsgrsp . (t) with the
run time distributions of the new algorithms. We use thedfelhg restart strategies and
corresponding algorithms:

— OpTIMUM. The fixed restart strategy’ and the corresponding algorithmxgp,
mentioned in Sect. 1 have the property that there is a rédistitrt * which is optimal

Table 2. Comparison of the distributions for cube with 100 samplashe100), 1000 samples
(cubeiooo), and a modified distribution with one artificial short rusénted ¢ube1op1,m)-

Instance Min 5% Median 95% MaRSP OPTIMUM t* LuBY WALSH

cubeioo 2629 2896 4661 7617 8821 4832 483200 106200 18500
cubeooo 1441 2990 4914 7664 14051 5067 506700 97360 31510
cubeigoim 0.7352 2990 4914 7647 14051 5061 725.9 0.735 5101 30280

4(time)

q(time)

0.8

0.6

0.4

09

0.8
0.7
0.6
0.5
0.4
0.3
0.2

01L"

2000

3000
t(s)
(a) Run time distributions focl qcol or

4000 5000 6000 7000

1

10
t(s)

T n M| n
100 1000

(c) Run time distributions fornpc_28

t(s)

t(s)

1le+06 ¢

10000
El

1000

3600
t(s)
(b) Expected run times farl qcol or

10000 —

f i i f
4000 5000 60007000

1000 |-

100 |

10 F

1B

0_17‘ o — T — Tt

100
t(s)

(d) Expected run times farnmpc_28

T —
1000

Fig. 2. Run time distributions and expected run times for the irstaol qcol or andvnpc_28

for a givenRSP and instance: [3]. If the cumulative distribution function(t) of
the instance is known, the optimal restart lirfimay be determined by minimizing
the expected run time(Tryep , () @s a function of the restart limit

E(TFIXEDt(TI:)) =

t

— Jy—a(t")dt

)

q(t)

(1)

i.e.,t* = argminE(Tkyep, (2))). Determiningt* can be done in our simulation en-
vironment but not usually in practice as the distributjdt) is typically not known.
LuBy. Luby et al. [3] define the universal strate§y = (1(1),1(2), ...) where

1(i) =

k—1
25,

{

ifi=2"—-1keN

I(i— 2kt 4 1) if 2F=1 < g < 2k — 1,

When the strategy” is employed on &SP, the corresponding algorithm is called
Lusy. In[3] itis further shown that the expected run time afiy (z) is within a
logarithmic factor from the expected run time oP@Mum (z) independently of.
WALSH. Another universal strategy is the strateg) = (w(1),w(2),...), where
w(i) = 2121, presented in [4]. The strategy differs frafi¥, for example, in the
rate of growth. Clearly, the restart limits iV grow exponentially, whereas"
grows only linearly with respect to The corresponding algorithm will be referred
to as WALSH.

Table 1 compares the three algorithms against the run tinRS®&f ColumnRSP re-
ports the expected run time &SP (x) for different instances:. Using the run time
distribution grsp(s)(t), we computed the optimum restart lintit for each instance
minimizing Eq. (1). The resulting expected run time is répdron column @TIMUM
and the corresponding restart limit in colunin The valueco is used to mark the
cases when run times forf@imum (x) andRSP(z) are equal. In this collection of in-
stances, in five cases out of nine the expected run timerai@um () is equal to that
of RSP(z). Some of the satisfiable instances, though not all, seemofiit from em-
ploying a fixed restart strategy with small restart limit. #sexample, the expected run
time for the algorithm FXED; with inputvimpc_ 28, is shown in Fig. 2(d) as a function
of the restart limitt (graph labeled®(Trxep,)). In other cases, the expected run times
of algorithms with larger restart limits compare favoratiythose with smaller restart
limits. An example is shown in Fig. 2(b).

The results for the two universal strategies are shown imuok LuBY and WALSH
of Table 1. Based on the results, it seems that in most cagems¢kances having
E(Toprmum(z)) 7 E(Trsp()) also profit of more complex strategies. We also note
that LuBY performs very badly on many instances with a high minimumtime. This
is a consequence of the slow growth of the restart limit inginategyS™. In general,
the algorithm WALSH seems to offer a relatively robust approach, resulting iadgo
speedup where such speedup would be obtainable witht- given thatt* is known,
and still performing usually well in cases Whelit€T oprivum (2)) = E(Trsp(a))- This
is a slightly surprising result, since to our knowledge ntroplity result exists for the
strategyS™W.

5 Parallel Solving of a Single Instance

In the previous section we discussed several restart gieatand resulting sequential
algorithms when the strategies are employed ®S&. In this section we develop a
number ofparallel algorithmsfor Grid environments based on the restart strategies.
Here we consider a Grid environment as an efficient distedbsystem for running jobs.
Hence, the algorithmic design boils down to approaches tastcacting a sequence of
jobs ji, ja, . . . to be submitted to the Grid for execution based diS® and a restart
strategy. Since each job has a resource lifpitimiting the execution time, we employ
a finite restart strategy(discussed below) on thRSP which guarantees that the run
time of the resulting algorithm is not more thdp. Hence, each jol; consists of the
RSP, the inputx to be solved and a finite restart strategy.

A finite restart strategyS = (t1,ta,...,t,) is a finite sequence of restart limits
which, when employed on RSP, will terminate the resulting algorithm unless a solu-
tion is found by the end of the restart linijt. Thelengthof the finite restart strategy,
denoted by} S|, is n. Given a restart strategy = (¢;,%2,...) and a resource limi,
we define an operatdmite(S) for constructing finite restart strategies frafras

finite(s) = 4 (7¢) it 1 > T
| (t1, 2, . . ., t) Wherem maximizesy " | t; < T otherwise.
For any restart strategy, the run time of the algorithm obtained by employfingte(.S)
on aRSP is less than or equal tf..

The most intuitive way of constructing jobs from a restaratggyS = (¢1,to,...)
is to assign the job; the restart strategf,) fori = 1,2, In practice this approach
performs very badly due to the high delays in actual Grid mmments. Therefore, the
parallel algorithms we propose are based on two gersefs@medor constructing a
sequence of jobs, given a restart stratsgy

— Straightforward schemésiven a restart strategy for constructing jobs we define
a sequence of restart strategies Ss, . . . in the following way: letS; = S and
given a strategyp;, the restart strategy;,; is constructed front; by removing
the first|finite(S;)| restart limits fromsS,. Given an environment witfv' PCEs, in
the straightforward scheme jobs are constructed from thaeseeS;, S, ... by
assigning the restart stratefiyite(S) for the jobsj, . . ., jn, thenfinite(Ss) for
the jobsjy 1, ..., jon and so forth. This strategy is discussed in [13].

— Faithful schemeln this scheme given a restart strateégye construct the sequence
S1,59,... as above and then assign the jgbthe restart strategfinite(S;), the
job jo the restart strategfymite(.S2), and so forth.

Parallel Algorithms. Given the randomized search procedure and the distribuigd e
ronment, the parallel algorithm is uniquely determinedhmywsed scheme (introduced
above) and the restart strategy. Furthermore, for a fixddntestrategy, the straightfor-
ward and faithful schemes result in the same parallel restrategy, and thus the same
algorithm. We will discuss six parallel algorithms:

— Themaximum parallel algorithniﬂXED‘}r is formed from the fixed restart strategy
STe and either straightforward or faithful scheme.

— The optimal parallel algorithmFixep?. is formed by finding a valug* which
minimizes the parallel run time distribution

ot [(= (1= q))t
- 1—(1—q()¥

for RSP(z) with the run time distributiony(¢). Equation (2) is obtained from
Eqg. (1) by substituting(¢) with the corresponding parallel distributidn— (1 —
q(t))™. However, as shown in [13], there are run time distributiémswhich
Fixep?l. does not result in minimum expected run time over all paraltgorithms.

— Thefaithful parallel Luby and Walsh algorithmsusy-F” and WALSH-F? are con-
structed by using the faithful scheme on the strategieand SV, respectively.

— Thestraightforward parallel Luby and Walsh algorithrha®)BY-s? and WALSH-S?
are constructed by using the straightforward scheme ontthegiess™ and SV,
respectively.

E(THXEDf(z)) (2)

Zero-Delay Parallel Environment. In this subsection we consider an idealized Grid
environment captured by the Grid model, where we set theydela= d, = 0 and
the resource limifl,, = 3600s. This provides us with a lower bound on the run times
achievable in more realistic Grid environments.

Table 3. Results for different strategies and the zero-delay pelrativironment

Instance N FIXED{. FIXEDY, LUBY-S” WALSH-s” LUBY-F’ WALSH-F

nod2-250 16 105.7 116.2 334.2 177.5 171.8 114.0
64 47.25 47.25 194.6 84.86 50.23 45.32
nod2-280 16 61.82 84.52 71.44 76.65 67.65 79.32
64 1936 21.55 22.29 25.69 21.44 24.58

99999900 16 1219 1219 14657 2910 1620 1238
64 1097 1097 14530 2784 1213 1094
cl qcol or 16 1293 1293 14730 2963 1553 1301
64 1223 1223 14660 2899 1287 1224
cube 16 2891 2891 33600 6777 8105 2996
64 2682 2682 33410 6570 3086 2687

dat ed 16 4844 64.12 59.30 53.29 63.46 60.15
64 1589 16.33 15.92 16.05 14.69 19.26
m zh-nd5 16 133.8 133.8 525.8 116.6 162.1 125.4
64 7323 73.23 259.2 126.1 84.53 81.76
vnpc_28 16 0.834 7.293 4.694 6.065 4.366 11.22
64 0.251 0.539 0.6507 0.7994 0.6550 0.5003
APr oVEO7 16 1049 1049 11040 2285 1299 1064
64 918.8 918.8 7823 1823 1056 915.4

We report the results for the maximum parallel algorithm auenn HXED% of
Table 3 for 16 and 64 PCEs. For comparison, we also report@gedlumn FXED?.
the results when using the optimal parallel algorithm, inchfttase we usg,. = cc.

The speedup is in most cases linear with respect to the addednces, and for
vnpc_28 even super-linear, for both}FEDp and Axep?.. For some instances, how-
ever, the speedup is negligible. It seems that there araigelistributions which do not
allow for speedup when parallelized in this manner afterrtageamount of PCEs has
been reached. Two different examples of this phenomenari@ser studied in Figures
2(b) and 2(d) forN = 1 and N = 8. The graphs labele8(7rycpr) in the figures are
the expected run times of the algorithmxED? with the respective instance as a func-
tion of the restart limit. In Fig 2(b), the run time of the algorithmi¥Ep? with large
values oft is almost equal to that of the shortest sampled run (the Ibeeontal line)
which can also be seen from the run time distribution of tiyw@thm FAXEDY when
N = 8, ¢s(t), in Fig 2(a). The situation is different in Fig 2(d), where tshortest run
is much shorter than the expected run also wives 8.

We also note that the difference betweer#b?’. and RXEDY. becomes insignifi-
cantwhenV increases. The intuitive explanatlonforthls is that thedfit of aggressive
restarting can be obtained by running several solvers iallearThe important conse-
guence of the phenomenon is that with a large number of PGEsignificance of the
restart strategies decreases.

The remaining columns in Table 3 show the behavior of theeggiasS™ and S™W.
The results are obtained by simulating 100 runs of the pa@ljorithms and reporting
the mean time required to find the solution. The column®Y¥-s” and WALSH-s?
correspond to the straightforward parallel restart sgyafer S andSW. This scheme

Table 4. Comparison of 64-PCE™ andS™ with f = 1.0s, f = 15.0s, andf = 100.0s

LuBY-F? WALSH-F’
Instance f=1.0 f =15.0 f =100.0 f =1.0 f =15.0 f = 100.0

mod2-250 68.09 50.23 47.19 46.54 48.85 48.55
mod2-280 34.71 21.44 20.16 23.82 21.69 18.55
99999900 1372 1213 1166 1093 1096 1105

clgcolor 1345 1287 1262 1220 1224 1222
cube 3950 3086 2977 2696 2688 2677
dated 28.43 14.69 18.71 18.74 15.85 18.57

mizh-md5 98.35 84.53 74.76 82.65 72.48 79.45
vmpc_28 0.5140 0.6550 0.6560 0.4717 0.5401 0.4870
AProVEO7 1088 1056 992.2 930.2 936.2 914.76

has the benefit that small restart limits are attempted oftenvever, especiallys™
suffers from the repeating of the short runs in cases whersrttallest run time is high.
The results corresponding to the faithful scheme are redantcolumns WweYy-F? and
WALSH-F?. In most cases the faithful scheme performs significantlyebehan the
straightforward scheme, and when this is not the case, ffegatice is relatively small.

To further enhance the strategigs and S", we studied the effect of multiplying
the restart limits of the strategies by a constant fagtor Table 4 for 64 PCEs. Based
on these results, the factor does not seem to have a signiéffanot on the run times.
The runs in Table 3 (as in Table 5) are measured With 15.0.

We study the effect of a larger sample base similar to theicaksble 2 in the zero-
delay environment. The results are reported in Table 5.tispiarticular instance, the
strategy FXED?. is equal to the maximum strategy both when the amount of sesnpl
is 100 and 1000. In this case, when the number of samplesrisased, the expected
solving time decreases for most algorithms. There is nafgignt difference between
WALSH-F” and AXED?, whereas WBY-F” suffers from a larger number of short un-
successful runs (even though not visible in Table 2, theiligions are significantly
different whent < T; e.g.¢(3600s) ~ 0.24 in the 100 samples distribution but only
approximately0.14 in the 1000 samples case). Sirmogbe is a satisfiable instance, it
is possible that there is a short run time for the randomizZgds®lver. Since the 1000
samples did not reveal a short run time, it might be that timeiswextremely improb-
able. To study the effect of such a short successful run weifgntite distribution of
cube to include a single short run. The resulting run times aremin the row la-

Table 5. Effect of additional samples on the zero-delay solving obe with 64 PCEs

Instance FXEDY. FIXEDY, LUBY-F” WALSH-F’

cubeioo 2682 2682 3086 2687
cubeooo 2364 2364 3760 2270
cubeigorm 11.86 2175 969.8 2185

beledcubeggi,,. In this case, UBY-F? is better than RED’}C because of the higher
probability of finding the short run.

Non-Zero Delay Parallel Environment. The simulation results from the parallel en-
vironment with zero submission delay and zero queuing detayide some insight to
how the parallelization method based on randomizing algms can perform on the
benchmark set. However, realistic parallel environmemggeneral, and Grid environ-
ments in particular, always include some overhead relateditializing the computa-
tions. As described in Sect. 3, we divide the delays into tategories: submit delay
and queue delay,. Typical values in NorduGrid aré = 12s andd, = 125s. However,
the two values seem to vary strongly. The simulated experisn&re presented in Ta-
ble 6 under the title “large delay”. All results are obtaingdcomputing the mean run
time over 100 samples usirfg = 3600s for the jobs.

The results show that almost always the maximum parallelrikgn F|XED1}c out-
performs those based on universal restart strategies sa ihgances. It is worth noting
that increasing the number of PCEs four-fold brings nextdiihimg in speedup, a con-
sequence of the long queuing delays.

It is possible that the submission and queue delays ardisigmily shorter in, say,
some other Grid environments. We simulate the effect of emdklays by using sub-
mission delayl = 5s and queue delay, = 30s. The results are reported under the
caption “small delay”. Even though the strategi€sand SV are now more compet-
itive, their effectiveness still suffers from the high dedaand it can be argued that
the maximum timeout is a sufficient approximation of the imptm. The super-linear
speedup observed in zero-delay environment cannot bewdusar either of the de-
layed environments. For certain instances, sucB¥#99900 andcube, already a
smallish number of parallel runs suffices to find a short reamfithe samples. As a
result, obtainable speedup is small.

We confirm these results by repeating them for two instanctései NorduGrid Grid
environment. We select two instances which according tsimellated results are il-
lustrative examples on the techniques used in paralleirgpirhe instancenpc_28
shows super-linear speedup in simulations in zero-delaiy@mments, but only a mod-
erate speedup in delayed environments using the technigeibésive studied. The in-
stanceAPr o VEQ7, on the other hand, has a less dynamic distribution in thalsitions
and yields no significant speedup at the transition from B#&CEs even in the zero-
delay environment. The results are presented in Table 7slihmission delays seem
to be below the average delay of 12 seconds, but the resutesspond approximately
to the simulated results. No speedup seems to be achievettidaumber of PCEs is
increased.

6 Parallel Solving of a Set of Instances

In this section we propose an algorithm for solving a coitetbf SAT problems ef-

ficiently in a Grid environment based on the results on sghdrsingle instance. The
results indicate that (i) an increase in the number of PCES dot result in a corre-
sponding speedup when solving a single instance and (ia farge number of prob-

Table 6.Results for different strategies and delayed parallelrenwments. The two rows for each
instance correspond t¥ = 16 (top) andN = 64 (bottom)

small delay large delay

Instance FXED}. FIXEDY, LUBY-F” WALSH-F’ FIXED}. FIXEDY, LUBY-F” WALSH-F

nod2-250 177.0 1451 232.7 164.4 352.8 379.3 399.8 399.3
161.5 157.7 182.7 133.5 364.4 355.7 422.7 350.4
nod2-280 125.8 159.0 137.4 150.7 306.8 331.0 321.4 350.0
118.1 126.2 135.2 132.4 296.3 327.7 320.9 340.1

99999900 1242 1268 1672 1306 1431 1477 1984 1527
1208 1246 1401 1253 1432 1485 1756 1490
cl gcol or 1340 1353 1455 1378 1506 1525 1846 1577
1328 1351 1448 1352 1508 1536 1777 1554
cube 2882 2960 9209 3067 3094 3117 9233 3195
2792 2840 3489 2842 3050 3121 4159 3145
dat ed 112.1 140.5 138.2 126.1 2722 323.8 281.6 312.1

104.7 1141 116.6 1174 2843 309.2 293.8 305.8
m zh-nd5 1814 190.4 268.7 199.4 352.6 391.2 4450 395.3
190.4 186.3 208.5 195.0 379.8 385.2 464.8 392.0
vnpc_28 43.27 67.35 62.70 65.49 155.7 206.7 198.4 214.0
42.18 68.06 62.59 64.30 1555 2183 200.0 212.0
APr oVEO7 1073 1089 1313 1127 1262 1289 1569 1310
1073 1065 1205 1061 1292 1299 1568 1300

Table 7. Experimental results in Grid for selected instances. Regas the average over 10 runs
using the strategg$ ™.

Instance PCEs Time d Instance PCEs Time d

vnpc_28 8 105.4 3.333 APr oVEO7 8 1624 5.917
16 125.7 7.668 16 1574 9.714
64 13455.189 64 1271 8.555

lems to solve, a good speedup is not obtained by using allabeurces for solving
a single problem at a time, but rather by dedicating only @aagermamount of PCEs
for a single problem and solving multiple problems simudtamsly instead. These ob-
servations lead to the followinigcally-aided fair-share algorithmGiven a collection
of instances, the instances are sent for solving in a roobdmanner by using the
maximum parallel algorithm eD?, . In addition, the problems are also solved lo-
cally at the same time using an algorithm similar tody with the modified strategy
SBC = (min{l(1), C}, min{l(2),C},...), whereC is a maximum local run time con-
stant, in a round-robin manner.

We provide experimental evidence that the proposed alguoris efficient in a real
Grid environment. For this experiment, we select 8 probl&ms our benchmark set
of 9 problems and run them in parallel with 64 PCEs, reseraingost eight PCEs per
problem. This enables us to compare the results of this erpat against a strategy

where 64 PCEs are dedicated for a single instance at a timdirst/excludecube
from the set of instances, since this problem is in the lirhgalvable problems within
3600 seconds in our Grid environment, having expected nu@ ¢if 4708 seconds in the
simulation environment. The resulting run time for the fnitance set is 1865 seconds.
The sum of the simulated run times for these instances frdmeTgis 5916 seconds.
This results in a speedup 3.17 compared to the strategy md @i PCEs per instance.
When these results are compared against a simple strateggrafig the problems on
a single PCE with no delays, the speedup computed from thiéses Table 1 is 7.32.

However, we note that the results can be significantly wdradifficult instance,
such acube, is included in the set of problems to solve. We repeated boveaex-
periment with 10 repetitions, now using 72 PCEs, resouroé II. = 7200 seconds
and includingcube to the set of problems to solve. This resulted in a speedup/éf 1
with average solving time of 5136 seconds in the Grid envirent compared to the
expected solving time of 9037 seconds with long delays arfd@#s in Table 6. When
these results are compared against a simple strategy dhgitte problems on a single
PCE with no delays, the speedup is 3.60.

7 Conclusions

In this paper we have developed techniques for solving ciidies of hard SAT instance
in a Grid using a randomized SAT solver. We have comparedreéifit approaches us-
ing a simulation framework consisting of a grid model cajgiithe communication
and management delays, and a representative collectiametfme distributions of a
randomized solver. The results are experimentally confiredso in NorduGrid which
is a European-wide distributed production level Grid. Wkelving a single hard SAT
instance, the results show that in practice often (i) aikegt small number of parallel
jobs suffices to increase the probability of finding a shamtiruthe distribution to a sig-
nificant level and (ii) the non-negligible delays in a Grithghate super linear speedups
that could be obtained in an ideal environment without argyde Hence, attempts to
decrease the overall expected run time by using clever ts@l/eestart strategies or
by finding optimal restart limits do not lead to significantgravements compared to
using the resource limit implied by the Grid environmenttasiestart limit. These ob-
servations lead to a novel strategy of using Grid to solviectibns of hard instances.
Instead of solving instances one-by-one, the strategy atrdscreasing the overall so-
lution time by applying an alternating distribution schiedu

Acknowledgments. The authors wish to thank the anonymous reviewers for tladir-v
able comments. The financial support of the Academy of Fah{pnojects 122399 and
112016), Helsinki Graduate School in Computer Science argirgering, and Jenny
and Antti Wihuri Foundation is gratefully acknowledged.

References

1. Eén, N., Sorensson, N.: An extensible SAT-solver. In: 2803. Volume 2919 of LNCS.,
Springer (2003) 502-518

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Gomes, C.P.,, Selman, B., Crato, N., Kautz, H.A.: Heailpdgphenomena in satisfiability

and constraint satisfaction problems. J. Automated Reag@d(1/2) (2000) 67—-100

. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speeduplafs Vegas algorithms. Inf.

Process. Let#7(4) (1993) 173-180

. Walsh, T.: Search in a small world. In: IJCAI, Morgan Kauafmm (1999) 1172-1177
. Kautz, H.A., Horvitz, E., Ruan, Y., Gomes, C.P., Selman, Bynamic restart policies. In:

AAAI/IAAL (2002) 674-681

. Ruan, Y., Horvitz, E., Kautz, H.A.: Restart policies withpendence among runs: A dynamic

programming approach. In: CP 2002, Proceedings. (20025863

. Streeter, M., Golovin, D., Smith, S.F.: Restart schesltde ensembles of problem instances.

In: AAAI, AAAI Press (2007) 1204-1210

. Huang, J.: The effect of restarts on the efficiency of daesarning. In: IJCAI. (2007)

2318-2323

. Wu, H., van Beek, P.: On universal restart strategiesdoktvacking search. In: CP. Volume

4741 of LNCS., Springer (2007)

Gomes, C.P., Selman, B.: Algorithm portfolios. Artiidintelligencel261-2) (2001) 43—-62
Wu, H., van Beek, P.: On portfolios for backtracking skan the presence of deadlines. In:
ICTAI. (2007) 231-238

Inoue, K., et al.: A competitive and cooperative apphotx propositional satisfiability.
Discrete Applied Mathematick54(16) (2006) 2291-2306

Luby, M., Ertel, W.: Optimal parallelization of Las Vegalgorithms. In: STACS. Volume
775 of LNCS., Springer (1994) 463-474

Boehm, M., Speckenmeyer, E.: A fast parallel SAT-sol#ficient workload balancing.
Annals of Mathematics and Artificial Intelligend&(4-3) (1996) 381-400

Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distribuggopositional prover and its
application to quasigroup problems. J. Symbolic Comporte2il(4) (1996) 543-560
Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel maféaded satisfiability solver: Design
and implementation. Electronic Notes in Theoretical Cotap8cience 283) (2005) 75-90
Blochinger, W., Westje, W., Kiichlin, W., Wedeniwski; EetaSAT — Boolean satisfiability
solving on desktop grids. In: CCGrid 2005, IEEE (2005) 10386

Jurkowiak, B., Li, C., Utard, G.: A parallelization sche based on work stealing for a class
of SAT solvers. Journal of Automated Reason@4gl) (2005) 73-101

Sinz, C., Blochinger, W., Kuchlin, W.: PaSAT — ParalléTSchecking with lemma ex-
change: Implementation and applications. In: SAT 2001uNa 9 of Electronic Notes in
Discrete Mathematics., Elsevier (2001) 12-13

Chrabakh, W., Wolski, R.: GridSAT: A chaff-based distitied SAT solver for the grid. In:
SC 2003, IEEE (2003)

Hyvérinen, A.E.J., Junttila, T., Niemel4, I.: A disution method for solving SAT in grids.
In: SAT 2006. Volume 4121 of LNCS., Springer (2006) 430-435

Forman, S., Segre, A.: NAGSAT: A randomized, completaralel solver for 3-
SAT. In: SAT 2002. (2002) Online proceedingshtt p: / / gauss. ececs. uc. edu/
Conf er ences/ SAT2002/ sat 2002l i st. ht i .

Pitkanen, M.J., et al.: Using the grid for enhancing teefggmance of a medical image
search engine. In: CBMS 2008, IEEE (2008) Accepted for palitbn.

Hyvérinen, A.E.J.: GridJM a Computer Prograimttp://ww. tcs. hut.fi/
~aehyvari/gridjm.

