
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

GridJM — A way for client job management in ARC
http://www.tcs.hut.fi/~aehyvari/gridjm/

Antti E. J. Hyvärinen

antti.hyvarinen@tkk.fi

Helsinki University of Technology

Laboratory for Theoretical Computer Science

Finland

GridJM – p. 1/21

http://www.tcs.hut.fi/~aehyvari/gridjm/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceOverview

• Grids offer high-throughput computing
◦ a large pool of resources
◦ an efficient method for discovering resources

• In arc, the discovering poses certain challenges to the client
◦ maintain list of resources
◦ select targets (brokering)
◦ optimize the submission rate
◦ minimize overhead

• This talk will give ideas on how the challenges can be
answered

• Introduces GridJM (Grid Job Manager) for ARC
• Based on previous work “A Job Manager for the NorduGrid

ARC” by H. T. Jensen and J. R. Leth

GridJM – p. 2/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceSubmiting jobs in ARC

• Arclib has a 5-stage approach to submitting jobs
• The first two receive information from the grid information

system (infosys)
◦ GetClusterResources() returns a list of URLs

pointing to clusters
◦ GetQueueInfo() queries the states of the queues in

the clusters
• The last three are related to matching with job description

(xrsl), brokering and final submission
◦ ConstructTargets()
◦ PerformStandardBrokering() (or similar)
◦ Submit() (of the submit-object)

GridJM – p. 3/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGoals for GridJM

• Job brokering and monitoring is done by the user (not by a
centralized authority)

By collecting history and infosys information, GridJM addresses
the following:

• Fault tolerance
• Fault avoidance
• Minimizing time between sending the job and receiving the

results

• Visualization of resource
usage

• Automatic collecting of results

GridJM – p. 4/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGoals for GridJM

• Job brokering and monitoring is done by the user (not by a
centralized authority)

By collecting history and infosys information, GridJM addresses
the following:

• Fault tolerance
• Fault avoidance
• Minimizing time between sending the job and receiving the

results

• Visualization of resource
usage

• Automatic collecting of results

GridJM

Hide the complexity
from the user!

GridJM – p. 4/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceCase Study: Independent jobs with parameters

data

Job
Grid

Job

d3

GridJMSubmitterJobdi,pi

d2

d1 p1 p2

p3

JobJobJob
• A job manager can help here by

◦ Submitting a set of previously constructed jobs
◦ Ensuring that the jobs are run
◦ Collecting the results automatically
◦ Enhancing throughput by using history information

GridJM – p. 5/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceCase Study: Constraint Model Solving in Grid

• Constraint Models:
Declarative logical
formulation of a problem
as a set of constraints to
the possible solutions

• New subproblems are
constructed based on
previous results

• Dynamic distribution
strategy in solving

• Brokering must be done
during the search

JobJobJob
S
atter queue

SATqueue

Grid
GridJM Solver

FF F FF F jobs resultsSear
h
FF FF FFFFpoolF

F F F
F F F F

FFF
F F F F F F F F

GridJM – p. 6/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceFault Tolerance and Avoidance

• Users need a reliable execution environment
• Misconfigured clusters and random faults result in failed

jobs
• Monitor jobs (constantly) while they are running
• Resubmit failed jobs automatically (limited times)
• Avoid badly working clusters by constructing a dynamic

blacklist
◦ If certain cluster fails your job once, it will probably do it

again soon
◦ Try clusters again occasionally, since the problem might

disappear

GridJM – p. 7/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceOptimize Total Time to Delivery

• The information about the grid comes from two sources
◦ Grid infosystem
◦ User experience

• A learning broker
◦ Resubmit jobs stuck in queue
◦ Avoid loaded clusters where queue time is long
◦ Update lists by retrying occasionally loaded clusters

• Maintain a (probabilistic) model of the grid

t−1 t t+1...

infosys infosys

GridJM – p. 8/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceEfficiency in Job Submission

• Information about Clusters, queues and queue statuses are
needed to make brokering decisions

• Especially queue status is time-consuming to gather and
always out-of-date

• Cache the queue info locally
◦ update periodically with queries
◦ update local cache when jobs are submitted

• This is available in ngsub

GridJM – p. 9/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceJob migration

• What if no resources are available at the time of
submission?
◦ The job must be submitted to a queue
◦ After some time, another queue might become shorter
◦ The previously submitted job should now be moved to

the new, shorter queue
◦ The process is called job migration

• The process is complicated, for example due to queue
priorities

• Job migration can be approximated and generalized with a
simple scheme
◦ If a job remains long in a non-running state, Remove the

job from the cluster and re-submit it

GridJM – p. 10/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceVisualization

• Long grid runs produce
large amounts of log
data

• No time information:
Difficult to detect
performance problems
in job creation

• Not easy to detect
suspicious failures, such
as downloads,
resubmission rates

• Solution: Visualize the
distributed execution

GridJM – p. 11/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceAutomatic result retrieval

• Simple abstraction: Run a job in the grid, get the result to
your self, ASAP.

• Not always this simple
◦ Complex workflows
◦ Huge result files

• User wishes to have some notification concering finished
jobs

• For efficiency reasons, transfers are done in parallel

GridJM – p. 12/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGridJM: A Set of Scripts or a Process?

• Script approach: Use a set of shell scripts to launch ngsub,
ngstat, ngget, ngkill. . .
◦ Fast to write (?)
◦ Single process failure is not catastrophic

• Process approach: A (single) process handles all
communication (by arclib)
◦ Efficient communication via low-level primitives
◦ Easy to gather history (blacklists. . .)

We selected the process -approach

GridJM – p. 13/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGridJM: Implementation

Grid

Job Job

F

GridJM

jobs

results

download

download

Userinterface Grid interface

Model

JobJob
Job

• Simple interface to user
• userinterface

◦ Listen user socket
◦ Listen results from grid interface
◦ Queue incoming jobs

• grid interface
◦ Maintain / update model
◦ Start downloads (separate process)
◦ listen to ending downloads (sig_chld)

GridJM – p. 14/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGridJM: Examples

GridJM – p. 15/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGridJM: Examples

GridJM – p. 16/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceGridJM: Examples

GridJM – p. 17/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceSome results

• Benchmarks
◦ sleep 300 seconds
◦ 3*10 Mb random input files
◦ 1000 jobs

• Experiments
◦ GridJM using a single resubmission
◦ ngsub with a single xrsl
◦ ngsub with 1000 xrsl’s

GridJM – p. 18/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceSubmit times

 0

 200

 400

 600

 800

 1000

ngsubngsub-singleGridJM

m
i
n
u
t
e
s

submission times

GridJM is slower than submitting everything in single xrsl
• However, not everything can be done in single xrsl

◦ e.g. the constraint problem

GridJM – p. 19/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceSuccess rate

 0

 20

 40

 60

 80

 100

ngsubngsub-singleGridJM

%

success rate

GridJM can be considerably more reliable
• The success rates are equally bad for single and multiple

submissions!
• Only 6 resubmissions required for GridJM

GridJM – p. 20/21

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer ScienceConclusions

• http://www.tcs.hut.fi/~aehyvari/gridjm/

• Greatly simplifies and streamlines ARC usage

Things to be improved
• Better local grid model
• Time to delivery from sending to end of download
• More realistic visualization (w.r.t. processor time)
• Nicer userinterface

GridJM – p. 21/21

http://www.tcs.hut.fi/~aehyvari/gridjm/

	Overview
	Submiting jobs in ARC
	Goals for
ed {GridJM}
	Goals for
ed {GridJM}

	Case Study: Independent jobs with parameters
	Case Study: Constraint Model Solving in Grid
	Fault Tolerance and Avoidance
	Optimize Total Time to Delivery
	Efficiency in Job Submission
	Job migration
	Visualization
	Automatic result retrieval
	GridJM: A Set of Scripts or a Process?
	GridJM: Implementation
	GridJM: Examples
	GridJM: Examples
	GridJM: Examples
	Some results
	Submit times
	Success rate
	Conclusions

