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ABSTRACT
Convolutional neural networks have recently been used to
obtain record-breaking results in many vision benchmarks.
In addition, the intermediate layer activations of a trained
network when exposed to new data sources have been shown
to perform very well as generic image features, even when
there are substantial differences between the original train-
ing data of the network and the new domain. In this paper,
we focus on scene recognition and show that convolutional
networks trained on mostly object recognition data can suc-
cessfully be used for feature extraction in this task as well.
We train a total of four networks with different training data
and architectures, and show that the proposed method com-
bining multiple scales and multiple features obtains state-of-
the-art performance on four standard scene datasets.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis
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scene recognition; convolutional networks; spatial pyramid;
linear classifiers; explicit kernel maps

1. INTRODUCTION
Scene recognition is an important problem in many ap-

plication areas of image and video processing. A standard
approach during the recent years has been to extract sev-
eral sets of local patch descriptors, encode them into high-
dimensional vectors, pool them into an image-level signa-
tures, employ some standard classification algorithm, and
possibly use late fusion to combine the results of multiple
features. Widely-used encodings have included SIFT bag-
of-words with spatial pyramids [11], sparse coding [6, 14],
and Fisher vectors [17, 9].
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Part-based approaches have recently shown high perfor-
mance in scene recognition [20, 9, 2]. These methods require
only weak supervision, that is, no annotations at the parts-
level, but only at the class-level. The part-based methods
can be considered as extensions of low-level SIFT-type de-
scriptors towards mid-level features that capture more infor-
mative visual elements. Another way to see the part-based
methods is to view them as extensions of the deformable
parts model [5], which has been very succesful in object
detection, but where the parts are assumed to have fixed
locations, to a more general image classification task.

Another recent development in image classification has
been the use of deep convolutional neural networks (CNNs),
with excellent results [10, 23, 18, 7]. Still, one drawback
with CNNs is that they require huge amounts of training
data and delicate tuning of the training parameters. It has,
however, been observed that CNNs trained with one visual
dataset can function as highly discriminative features even
for considerably different data domains and tasks [3, 16, 7].

In this work, CNNs trained with external data and with
two different architectures are used as feature extractors in a
standard linear-SVM-based multi-feature visual recognition
framework for scene recognition. We consider scene recog-
nition to be a particularly interesting task to study using
CNNs, as the higher-layer convolutional filters are visually
very similar to image parts in part-based methods [23]. We
apply our recognition framework to four standard datasets
for scene recognition and obtain competitive recognition ac-
curacies, exceeding the current state-of-the-art results, to
the best of our knowledge, for all four datasets.

2. RELATED WORK
There has been lots of work done on scene recognition,

but we limit the discussion to only the most relevant recent
contributions in this section. The Fisher vector encoding
can arguably be considered as the current state-of-the-art in
local feature based image classification [17, 9]. By measur-
ing the deviation of a sample from a GMM-based generative
model in the SIFT descriptor space, one ends up, however,
with very high-dimensional image signatures. Comparable
results on standard benchmarks have also been obtained us-
ing sparse coding [6, 14] and superpixel segmentation [1].

Several part-based methods have recently been proposed
as extensions to the methods based on local feature encod-
ing. The part-based methods can be based on training data
containing bounding boxes [24] or image-level class annota-
tions [20, 9, 2]. To further increase the classification accu-



racy, the part-based methods can be combined with local
feature encodings, e.g. with Fisher vectors [9, 2].

In particular, the very recent ImageNet classification chal-
lenges have been dominated by CNN-based methods [10,
23]. The convolutional networks based on the structure of
Krizhevsky et al [10] typically contain five convolutional lay-
ers, followed by two fully-connected layers of size 4096 neu-
rons, and the output layer. Existing CNNs, often trained
with ImageNet data, have also been used for generic im-
age feature extraction. Several tools exist for this purpose,
including OverFeat [18], DeCAF [3], and Caffe [8].

The most similar recent publications to our work are [3,
16, 7]. In [3], a CNN trained with ImageNet 2012 data is
applied to object recognition, subcategory recognition, and
scene recognition. Our work has been inspired by the scene
recognition experiments in [3], as we feel that their baseline
classification setup does not fully illustrate the potential of
CNN features in this task. The publicly available OverFeat
CNN [18], trained with ImageNet 2013 data, is used for sev-
eral image classification and recognition tasks in [16]. In [7],
average, max, and VLAD pooling and multi-scale spatial
pyramids are proposed for CNN features, and state-of-the-
art results are obtained with several datasets. In this work,
we focus on scene recognition. We train several CNNs with
different input data and apply a multi-feature recognition
framework with hard negative mining [13] and linear SVMs
with approximative kernel maps [19], which has been pre-
viously succesfully used especially with local features. We
compare our features to previous methods based on CNNs,
to part-based approaches, and to local feature encodings.

3. SCENE RECOGNITION FRAMEWORK
We extracted four different CNN features from the images.

The used CNNs were trained on ImageNet 2010 and 2012
training datasets (about 1.3M images each) using Caffe [8],
following as closely as possible the network structure param-
eters of Krizhevsky et al [10] (“201x-distort” in our notation)
and Zeiler & Fergus [23] (“201x-aratio”). Due to different
software tools used, our networks are not exact reimple-
mentations. For example, we did not use the convolutional
layer RMS renormalization of [23]. The input images for the
CNNs were resized to 256×256 pixels, by distorting the as-
pect ratio for 201x-distort and by cropping the center square
for 201x-aratio. A random crop of 227×227 pixels (with a
0.5 probability of horizonal flip) was extracted from input
images, and the training data was processed for 90 epochs
in mini-batches of 256 (201x-distort) or 128 images (201x-
aratio). Due to space constraints, we omit the details of
the networks here and point interested readers to [10, 23,
8]. On a 6 GB NVidia GTX Titan GPU card, the training
lasted about 7 and 13 days per CNN for 201x-distort and
201x-aratio, respectively.

We use the activations of the first fully-connected layers of
each network as our features, as they have been observed to
provide the best results (our experiments, and [3, 16]), which
results in 4096-dimensional feature vectors. The test images
are resized similarly as the training data, and then the cen-
ter crops of 227×227 pixels are forward-passed through the
networks to extract the features. Furthermore, we use the
“reverse” spatial pyramid pooling proposed in [7] with two
scale levels. Our first level corresponds to the full image, and
the second level consists of nine regions of 128×128 pixels
with a stride of 64 pixels. The CNN activations of the re-

Table 1: Classification accuracies (and standard de-
viations) for the scenes-15 dataset

Method Accuracy

Lazebnik et al (2006) [11] 0.814 (0.005)
Sun & Ponce (2013) [20] 0.860 (0.008)
Zheng et al (2012) [24] 0.863
Paris et al (2012) [14] 0.870 (0.005)
Bu et al (2013) [1] 0.894 (0.007)
Gao et al (2010) [6] 0.898 (0.005)

full image spatial pyr.
2010-aratio 0.887 (0.003) 0.915 (0.003)
2010-distort 0.881 (0.006) 0.908 (0.003)
2012-aratio 0.887 (0.005) 0.913 (0.005)
2012-distort 0.884 (0.006) 0.907 (0.005)
fusion 0.907 (0.003) 0.921 (0.004)

Table 2: Classification accuracies (and standard de-
viations) for the uiuc-sports dataset

Method Accuracy

Li & Fei-Fei (2007) [12] 0.734
Gao et al (2010) [6] 0.853 (0.005)
Sun & Ponce (2013) [20] 0.864 (0.009)
Zheng et al (2012) [24] 0.872
Paris et al (2012) [14] 0.877 (0.011)

full image spatial pyr.
2010-aratio 0.935 (0.009) 0.941 (0.007)
2010-distort 0.942 (0.010) 0.944 (0.008)
2012-aratio 0.938 (0.008) 0.946 (0.010)
2012-distort 0.938 (0.011) 0.941 (0.006)
fusion 0.947 (0.010) 0.948 (0.009)

gions are then pooled using average pooling, and the activa-
tions of the different scales are concatenated. The resulting
spatial pyramid features are therefore 8192-dimensional.

A one-vs-all linear classifier is trained for each scene cat-
egory in all experiments, and the scene category with the
maximum confidence score is used as the result of the multi-
class classification. We apply the homogeneous kernel map
approximations of the intersection kernel [21], and use the
LIBLINEAR [4] library with the L2-regularized logistic re-
gression solver. In the fusion experiments, the four features
are always late-fused using geometric mean.

4. EXPERIMENTS
We present scene recognition results on four widely used

datasets. The Fifteen Scene Categories (scenes-15 ) dataset
[11] contains 4485 greyscale images assigned to 15 categories,
with 200 to 400 images belonging to each category. We use
100 images per class for training and the rest for testing.
The UIUC sports (uiuc-sports) dataset [12] contains 8 sports
event categories with 137 to 250 images per sports event and
a total of 1579 images. We use 70 randomly selected images
for training and 60 for testing. For both these datasets, we
always use all available negative samples.

The MIT indoor database (indoor-67 ) contains 67 indoor
scene categories and a total of 15620 images [15]. On aver-
age, 80 images of each class are used for training and 20 for
testing. The sun397 scene benchmark contains 397 scene



Table 3: Averages of per-class classification accura-
cies for the indoor-67 dataset

Method Accuracy

Zheng et al (2012) [24] 0.472
Bu et al (2013) [1] 0.483
Sun & Ponce (2013) [20] 0.514
Razavian et al (2014) [16] 0.584
Juneja et al (2013) [9] (BoP) 0.461

(FV) 0.608
(BoP+FV) 0.631

Doersch el al (2013) [2] (MLE) 0.640
(MLE+FV) 0.669

Gong et al (2014) [7] (full image) 0.537
(avg pool) 0.656
(VLAD) 0.689

full s. pyr.
2010-aratio 0.624 0.674
2010-distort 0.601 0.657
2012-aratio 0.627 0.669
2012-distort 0.617 0.657
fusion 0.689 0.701

Table 4: Classification accuracies (and standard de-
viations) for the sun397 dataset

Method Accuracy

Xiao et al (2010) [22] 0.380
Donahue et al (2014) [3] 0.409 (0.003)
Sánchez et al (SIFT) 0.433 (0.002)

(2013) [17] (SIFT+LCS) 0.472 (0.002)
Gong et al (full image) 0.396

(2014) [7] (avg pool) 0.475
(VLAD) 0.520

full image spatial pyr.
2010-aratio 0.456 (0.002) 0.503 (0.001)
2010-distort 0.456 (0.004) 0.504 (0.002)
2012-aratio 0.460 (0.002) 0.506 (0.002)
2012-distort 0.454 (0.003) 0.506 (0.003)
fusion 0.519 (0.003) 0.547 (0.002)

categories and a total 108 756 images [22]. 50 images per
category are used for training and for testing. For these
datasets, we include two rounds of hard negative mining [13]
and sample 1000 negative examples on each round.

For the first two datasets, we use 10 random splits into
training and test sets, with indoor-67 we use the partitions
of [15], and with sun397 we use the same 10 partitions as in
[22]. For indoor-67, we use average of per-class accuracies
(mean of diagonal values of the confusion matrix) as the per-
formance metric. For other datasets, the mean and standard
deviation of average multiclass accuracies are calculated.

The results of the experiments are shown in Tables 1–4.
For scenes-15 and uiuc-sports, the confusion matrices of the
runs achieving the highest accuracies are shown in Figs. 1–2.
For indoor-67 and sun397, the detailed results of our exper-
iments can be found at http://research.ics.aalto.fi/cbir/.

For all datasets, our results are reported with the four
used CNNs and with the full image and spatial pyramid fea-
tures. In the literature, full image CNN feature results have

been reported for indoor-67 and sun397 [16, 3, 7]. Our best
single features outperform the previously reported results:
0.627 vs. 0.584 [16] for indoor-67 and 0.460 vs. 0.409 [3] for
sun397. Using the two-scale pyramid, which doubles the fea-
ture dimensionality and requires one to forward-pass several
(in our case, ten) image regions through the CNN, further
brings a notable performance increase. Overall, the four
used CNNs achieve rather similar results, without any clear
differences based on either the used architecture or data.
Feature fusion systematically improves the results, although
the improvement is not as large with the spatial pyramid
features. Remarkably, our results with spatial pyramids and
feature fusion considerably improve on the best reported re-
sults, according to our knowledge, on all datasets.

The SIFT-like local feature encodings can in some sense
be considered to form a baseline for any higher-level ap-
proaches. On scenes-15 and uiuc-sports, the highest pub-
lished accuracies, known to us, have been obtained with
sparse coding [6, 14]. On indoor-67 and sun397, the best re-
ported accuracies with local features, 0.608 for indoor-67 [9],
and 0.433 for sun397 (single feature) [17], have been ob-
tained with Fisher vectors. However, these methods result
in signature dimensionalities in the order of O(105).

The part-based approaches, such as bag-of-parts [9] or [20,
24], have been shown to produce promising results, but of-
ten not quite reaching the top-performing local features, ex-
cept for the mid-level elements [2] in indoor-67. Part-based
methods can, however, be easily applied as complementary
features to local feature encodings to improve the overall
recognition accuracy [9, 2] (see Table 3).

The CNN activation features have recently been used to
obtain the best known results on the indoor-67 and sun397
datasets. The accuracy of the activation features as such
(our full image results and [16, 3, 7]) is rather close to the
Fisher vectors (whose dimensionality can be almost two or-
ders of magnitude higher). By using multiple scales and
concatenating the activations, one can, however, further im-
prove the CNN features. One possibility is to use average
pooling, as in our spatial pyramid results and in [7]. It
should be noted that we use two scales whereas [7] has three
scale levels and a stride of 32, which requires considerably
more forward-passes of image regions on a single CNN than
our method even with the four CNNs used here. Using a
more sophisticated pooling strategy, as the VLAD pooling,
including pre- and post-PCA steps to reduce the dimension-
ality, proposed also in [7], can also improve the results.

5. CONCLUSIONS
The CNN activation features have a great promise as uni-

versal representation for various image classification and re-
trieval tasks. Compared to many existing image signatures,
CNN activations are fast to extract, even when applying
some kind of a spatial pyramid structure, as the pipeline con-
sist only of image transformations, forward-passes through
the CNN, and possible pooling. At the same time, the fea-
ture dimensionalities remain modest, especially when com-
pared to e.g. the Fisher vector encoding which in practice
requires a separate quantization scheme.

In recent works, part and object based approaches have
emerged as a way to construct higher-order models than
with SIFT-like local feature encodings. CNN activation fea-
tures extracted on multiple scales, with the current state-
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Figure 1: Confusion matrix for the spatial pyramid
feature fusion experiment on the scenes-15 dataset
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Figure 2: Confusion matrix for the spatial pyramid
feature fusion experiment on the uiuc-sports dataset

of-the-art performance reported on several datasets, can be
considered as an alternative approach for this purpose.

On the other hand, combining several CNNs can also re-
sult in a performance gain as was demonstrated in the ex-
periments of this paper. This has also been observed e.g. in
the ImageNet challenges, even when using several networks
of identical architecture and trained with the same input
data [10, 23]. Even better results can be expected if the
variety of the used CNNs would be larger.
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