

# Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl

Kimmo Järvinen

Department of Information and Computer Science Aalto University, School of Science and Technology Espoo, Finland

# **AES-inspired SHA-3 Candidates**

- Design strongly influenced by AES: Share the structure and have significant similarity in transformations, or even use AES as a subroutine
- ▶ ECHO, Fugue, Grøstl, and SHAvite-3
- Benadjila et al. (ASIACRYPT 2009) studied useability of Intel's AES instructions for AES-inspired candidates Conclusion: only ECHO and SHAvite-3, which use AES as a subroutine, benefit from the instructions
- This is the first study of combining AES with the SHA-3 candidates on hardware (FPGA)



# **Research Topics and Motivation**

#### **Research Questions**

- What modifications are required to embed AES into the data path of the hash algorithm (or vice versa)?
- ► How much resources can be shared (logic, registers, memory, ...)?
- What are the costs (area, delay, throughput, power consumption, ...)?

## Applications

- Any applications that require dedicated hardware implementations of a hash algorithm and a block cipher would benefit from reduced costs
- Particularly important if resources are very limited



# **Advanced Encryption Standard**

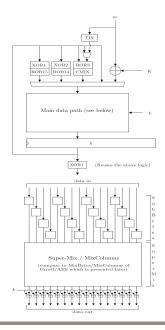
#### AES with a 128-bit key (AES-128)

- State:  $4 \times 4$  bytes; each byte is an element of  $GF(2^8)$
- 10 rounds with four transformations

#### Transformations

- SubBytes: Bytes mapped independently with (1) a multiplicative inverse in GF(2<sup>8</sup>) and (2) an affine transformation
- ShiftRows: The row i shifted to the left by i bytes
- MixColumns: Columns multiplied with a fixed polynomial over GF(2<sup>8</sup>) modulo x<sup>4</sup> + 1 (omitted in the last round)
- AddRoundKey: A 128-bit bitwise xor with a round key




# Fugue

- 32-bit block size, 960-bit chaining value
- AES-inspired SMIX and certain other transformations (xors and rotations)
- SMIX operates on 128 bits
- SMIX includes SubBytes of AES followed by Super-Mix inspired by MixColumns
- Super-Mix includes cross-mixing between columns and can be seen as a matrix multiplication where a 16-byte vector is multiplied from the left by a 16 × 16 byte matrix (sparse)



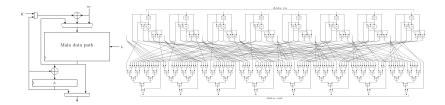
# Fugue / AES

- SubBytes shared entirely
- ShiftRows embedded into the input multiplexers
- Super-Mix/MixColumns share the multipliers and xors but require additional multiplexers
- Interface mismatch (inputs 32 vs. 128 bits, outputs 256 vs. 128 bits)
- KeyExpansion on the data path can share four S-boxes and reuse registers (*h*) but doubles the latency





The 2nd SHA-3 Candidate Conference Santa Barbara, CA, USA August 23–24, 2010


# Grøstl

- 512-bit block size, 512-bit chaining value
- The compression function consists of two AES-inspired transformations: P and Q which are almost the same
- P and Q include AddRoundConstant (the only difference between P and Q), SubBytes, ShiftBytes, and MixBytes
- The transformations are applied to a 512-bit State



# Grøstl / AES

- The 512-bit Grøstl data path used for at most four parallel AES encryptions (or KeyExpansions)
- SubBytes shared entirely
- ShiftRows constructed from ShiftBytes by swapping some bytes (12 if four parallel AES encryptions)
- MixBytes/MixColumns share the multipliers and xors but require additional multiplexers





# **Results**

#### Table: Fugue results on Altera Cyclone III EP3C80F780C7 FPGA

|                                                         | fugue                 | fugue_aes                                                                         | fugue_aes_ke                                                                            |
|---------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Place&route results                                     |                       |                                                                                   |                                                                                         |
| Logic cells (LC)<br>Registers<br>f <sub>max</sub> (MHz) | 3562<br>1005<br>63.93 | $\begin{array}{c} 4520 (+26.9\%) \\ 1105 (+10.0\%) \\ 60.75 (-5.0\%) \end{array}$ | $\begin{array}{r} 4875 \ (+36.9\%) \\ 1113 \ (+10.7\%) \\ 59.81 \ (-6.4\%) \end{array}$ |
| Fugue performance                                       |                       |                                                                                   |                                                                                         |
| Latency (clock cyc.)<br>Throughput (Gbps)               | 2<br>1.023            | 2<br>0.972                                                                        | 2<br>0.957                                                                              |
| AES performance                                         |                       |                                                                                   |                                                                                         |
| Latency (clock cyc.)<br>Throughput (Gbps)               | -                     | 10<br>0.778                                                                       | 20<br>0.383                                                                             |

Note: AES core with KeyExpansion requires 2525 LCs and 527 registers (of which KeyExpansion takes 536 LCs and 136 regs.)



# **Results (cont.)**

|                                                         | groestl                | groestl_aes                                                                                     | groestl_aes_ke                                                                                  | groestl_4aes                                                                              |
|---------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Place&route results                                     |                        |                                                                                                 |                                                                                                 |                                                                                           |
| Logic cells (LC)<br>Registers<br>f <sub>max</sub> (MHz) | 12086<br>1547<br>57.52 | $\begin{array}{c} 12387 \ (+2.5 \ \%) \\ 1550 \ (+0.2 \ \%) \\ 54.13 \ (-5.9 \ \%) \end{array}$ | $\begin{array}{c} 12520 \ (+3.6 \ \%) \\ 1558 \ (+0.7 \ \%) \\ 55.79 \ (-3.0 \ \%) \end{array}$ | $\begin{array}{c} 13723 (+13.5\%) \\ 1550 \ \ (+0.2\%) \\ 56.03 \ \ (-2.6\%) \end{array}$ |
| Grøstl performance                                      |                        |                                                                                                 |                                                                                                 |                                                                                           |
| Latency (clock cyc.)<br>Throughput (Gbps)               | 20<br>1.473            | 20<br>1.386                                                                                     | 20<br>1.428                                                                                     | 20<br>1.434                                                                               |
| AES performance                                         |                        |                                                                                                 |                                                                                                 |                                                                                           |
| Latency (clock cyc.)<br>Throughput (Gbps)               |                        | 10<br>0.693                                                                                     | 10<br>0.714                                                                                     | 10<br>2.869                                                                               |

#### Table: Grøstl results on Altera Cyclone III EP3C80F780C7 FPGA



## Conclusions

- Both Fugue and Grøstl can be combined with AES with small overheads in area and speed (at least in FPGAs)
- Grøstl has almost negligible overheads because the entire data path and registers can be shared in a direct manner and including parallel encryptions and KeyExpansion(s) is easy
- Possibility to efficiently combine the hash algorithm with AES is an asset that should be taken into account while selecting SHA-3
- Future work: Other data path widths, unrolling and pipelining, different algorithm variants, side-channel countermeasures, ...



Thank you. Questions?



The 2nd SHA-3 Candidate Conference Santa Barbara, CA, USA August 23–24, 2010