On Repeated Squarings in Binary Fields

Kimmo Järvinen

Department of Information and Computer Science Helsinki University of Technology

August 14, 2009

Introduction

Repeated squaring

- Repeated squaring: $a^{2^e}(x)$ where $a(x) \in \mathbb{F}_{2^m}$ with polynomial basis
- Applications in elliptic curve cryptography (e.g., inversions in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAs)

- Popular implementation platforms for cryptography
- Existing repeated squarers iterate squaring for e times
- How to implement efficient repeated squarers with FPGAs?

Introduction

Repeated squaring

- Repeated squaring: $a^{2^e}(x)$ where $a(x) \in \mathbb{F}_{2^m}$ with polynomial basis
- Applications in elliptic curve cryptography (e.g., inversions in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAs)

- Popular implementation platforms for cryptography
- Existing repeated squarers iterate squaring for e times
- How to implement efficient repeated squarers with FPGAs?

Repeated squaring in binary fields

Squaring is $a^2(x) = \sum_{i=0}^{m-1} a_i x^{2i} \mod p(x)$ where $a_i \in \{0, 1\}$ and p(x) is an irreducible polynomial

A linear transformation described by **Qa** where $\mathbf{a} = [a_0 a_1 \dots a_{m-1}]^T$ and

$$\mathbf{Q} = \begin{bmatrix} 1 & q_{0,1} & q_{0,2} & \cdots & q_{0,m-1} \\ 0 & q_{1,1} & q_{1,2} & \cdots & q_{1,m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & q_{m-1,1} & q_{m-1,2} & \cdots & q_{m-1,m-1} \end{bmatrix}$$

A repeated squaring is given by **Q**^ea

Repeated squaring in binary fields

Squaring is $a^2(x) = \sum_{i=0}^{m-1} a_i x^{2i} \mod p(x)$ where $a_i \in \{0, 1\}$ and p(x) is an irreducible polynomial

A linear transformation described by **Qa** where $\mathbf{a} = [a_0 a_1 \dots a_{m-1}]^T$ and

$$\mathbf{Q} = \begin{bmatrix} 1 & q_{0,1} & q_{0,2} & \cdots & q_{0,m-1} \\ 0 & q_{1,1} & q_{1,2} & \cdots & q_{1,m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & q_{m-1,1} & q_{m-1,2} & \cdots & q_{m-1,m-1} \end{bmatrix}$$

A repeated squaring is given by **Q**^ea

Look-up tables (LUTs)

- Basic building block of an FPGA is an *n*-to-1 bit look-up table (*n*-LUT)
- Typically, n = 4 but contemporary FPGAs have larger n, e.g., n = 6 (Xilinx Virtex-5) or n = 7 (Altera Stratix-II, and beyond)
- Notice that using only two inputs of an *n*-LUT costs as much as using all of its inputs

Definitions

Definition (Weight and row-weight)

Weight, $W(\mathbf{Q}^e)$, is the number of ones in \mathbf{Q}^e ; and Row-weight, $W_i(\mathbf{Q}^e)$, is the number of ones on the i^{th} row of \mathbf{Q}^e

Definition (Area)

Area, $\mathcal{A}(\mathbf{Q}^{e})$, is the number of *n*-LUTs required to implement \mathbf{Q}^{e}

Definition (Critical path)

Critical path, $\mathcal{D}(\mathbf{Q}^e)$, is the length of the longest path of consecutive *n*-LUTs in the circuit computing \mathbf{Q}^e

Weights of the NIST fields

Area and delay

Area

It is possible to implement \mathbf{Q}^e with a circuit whose area $\mathcal{A}_n(\mathbf{Q}^e)$ satisfies

$$\mathcal{A}_n(\mathbf{Q}^e) \leq \sum_{i=1}^{m} \left\lceil \frac{\mathcal{W}_i(\mathbf{Q}^e) - 1}{n-1} \right\rceil$$

Delay

Critical path, $\mathcal{D}_n(\mathbf{Q}^e)$, is bounded by

$$\mathcal{D}_n(\mathbf{Q}^e) \leq \max_i \lceil \log_n \mathcal{W}_i(\mathbf{Q}^e) \rceil$$

Area and delay

Area

It is possible to implement \mathbf{Q}^e with a circuit whose area $\mathcal{A}_n(\mathbf{Q}^e)$ satisfies

$$\mathcal{A}_n(\mathbf{Q}^e) \leq \sum_{i=1}^m \left\lceil \frac{\mathcal{W}_i(\mathbf{Q}^e) - 1}{n-1} \right
ceil$$

Delay

Critical path, $\mathcal{D}_n(\mathbf{Q}^e)$, is bounded by

$$\mathcal{D}_n(\mathbf{Q}^e) \leq \max_i \lceil \log_n \mathcal{W}_i(\mathbf{Q}^e)
ceil$$

Consider computing $a^{2^2}(x)$ in $\mathbb{F}_2[x]/x^4 + x + 1$. We have

$$\mathbf{Q}^2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Weights: $W(\mathbf{Q}^2) = 9$ and $W_1(\mathbf{Q}^2) = 4$, $W_2(\mathbf{Q}^2) = 2$, $W_3(\mathbf{Q}^2) = 2$, and $W_4(\mathbf{Q}^2) = 1$.
- Area: if n = 2, we get $\mathcal{A}_2(\mathbf{Q}^2) \le 5$ (minimum $\mathcal{A}_2(\mathbf{Q}^2) = 4$). If n = 4, we get $\mathcal{A}_4(\mathbf{Q}^2) = 3$
- *Delay: if* n = 2, we get $D_2(\mathbf{Q}^2) = 2$ and $D_4(\mathbf{Q}^2) = 1$.

Consider computing $a^{2^2}(x)$ in $\mathbb{F}_2[x]/x^4 + x + 1$. We have

$$\mathbf{Q}^2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Weights: $W(\mathbf{Q}^2) = 9$ and $W_1(\mathbf{Q}^2) = 4$, $W_2(\mathbf{Q}^2) = 2$, $W_3(\mathbf{Q}^2) = 2$, and $W_4(\mathbf{Q}^2) = 1$.
- Area: if n = 2, we get $\mathcal{A}_2(\mathbf{Q}^2) \le 5$ (minimum $\mathcal{A}_2(\mathbf{Q}^2) = 4$). If n = 4, we get $\mathcal{A}_4(\mathbf{Q}^2) = 3$

• *Delay: if* n = 2, we get $D_2(\mathbf{Q}^2) = 2$ and $D_4(\mathbf{Q}^2) = 1$.

Consider computing $a^{2^2}(x)$ in $\mathbb{F}_2[x]/x^4 + x + 1$. We have

$$\mathbf{Q}^2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Weights: $W(\mathbf{Q}^2) = 9$ and $W_1(\mathbf{Q}^2) = 4$, $W_2(\mathbf{Q}^2) = 2$, $W_3(\mathbf{Q}^2) = 2$, and $W_4(\mathbf{Q}^2) = 1$.
- Area: if n = 2, we get $A_2(\mathbf{Q}^2) \le 5$ (minimum $A_2(\mathbf{Q}^2) = 4$). If n = 4, we get $A_4(\mathbf{Q}^2) = 3$
- *Delay: if* n = 2, we get $D_2(\mathbf{Q}^2) = 2$ and $D_4(\mathbf{Q}^2) = 1$.

Table: Areas and delays for NIST $\mathbb{F}_{2^{233}}$ with different *n*

	$\mathcal{A}_n(\mathbf{Q}^e)$						$\mathcal{D}_n(\mathbf{Q}^e)$					
n	2	3	4	5	6	7	2	3	4	5	6	7
<i>e</i> = 1	153	153	153	153	153	153	1	1	1	1	1	1
<i>e</i> = 2	361	245	230	230	230	230	2	2	2	1	1	1
<i>e</i> = 3	676	385	349	238	233	233	3	2	2	2	1	1
<i>e</i> = 4	1141	616	466	358	349	291	4	3	2	2	2	2
<i>e</i> = 5	1844	973	699	550	466	396	4	3	2	2	2	2
<i>e</i> = 6	2892	1511	1035	812	663	580	5	3	3	2	2	2

Rather than

• iterating a squarer for *e* clock cycles,

- computing Q^e directly, or
- using unrolled squarers (Q||Q||...||Q, e times)

we search a concatenation $\mathbf{Q}^{e_1} || \mathbf{Q}^{e_2} || \dots || \mathbf{Q}^{e_N}$ with $e = \sum_{i=1}^{N} e_i$ minimizing the metric under optimization (area, delay, etc.)

Example

Rather than

- iterating a squarer for *e* clock cycles,
- computing Q^e directly, or
- using unrolled squarers (**Q**||**Q**||...||**Q**, *e* times)

we search a concatenation $\mathbf{Q}^{e_1} || \mathbf{Q}^{e_2} || \dots || \mathbf{Q}^{e_N}$ with $e = \sum_{i=1}^{N} e_i$ minimizing the metric under optimization (area, delay, etc.)

Example

Rather than

- iterating a squarer for e clock cycles,
- computing Q^e directly, or
- using unrolled squarers (**Q**||**Q**||...||**Q**, *e* times)

we search a concatenation $\mathbf{Q}^{e_1} || \mathbf{Q}^{e_2} || \dots || \mathbf{Q}^{e_N}$ with $e = \sum_{i=1}^{N} e_i$ minimizing the metric under optimization (area, delay, etc.)

Example

Rather than

- iterating a squarer for *e* clock cycles,
- computing Q^e directly, or
- using unrolled squarers (**Q**||**Q**||...||**Q**, *e* times)

we search a concatenation $\mathbf{Q}^{e_1} || \mathbf{Q}^{e_2} || \dots || \mathbf{Q}^{e_N}$ with $e = \sum_{i=1}^{N} e_i$ minimizing the metric under optimization (area, delay, etc.)

Example

Implementation: Varying exponent

Solution 1 (Distinct exponents, $\{e_1, \ldots, e_\ell\}$)

- Let $\Delta_i = e_i e_{i-1}$
- Find the optimal circuits for each Δ_i and concatenate them
- Select results using a multiplexer

Example

If $E = \{1, 2, 4, 8, 16\}$ and n = 6, we get the repeated squarer shown below with an area estimate of 1600 LUTs.

Department of Information and Computer Science

Implementation: Varying exponent

Solution 2 (Range, $0 \le e \le e_{max}$)

- Let e_{opt} be the exponent that minimizes $\mathcal{A}_n(\mathbf{Q}^{\hat{e}})/\hat{e}$
- Concatenate $\lfloor e_{max}/e_{opt} \rfloor \mathbf{Q}^{e_{opt}}$ blocks
- Compute the remaining squarings with a square chain

Example

If $0 \le e \le 14$ and n = 6, we get the repeated squarer shown below with an area estimate of 1238 LUTs.

Results

- Several repeated squarers were synthesized for Spartan-3A and Virtex-5 FPGAs (see the paper)
- The results show that repeated squarers are small and fast enough to be included in existing finite field processors

Example (NIST $\mathbb{F}_{2^{233}}$, Virtex-5)

Solution 1 with $\{1, 2, 4, 8, 16\}$: area 1823 LUTs and delay 8.23 ns Solution 2 with $0 \le e \le 11$: area 1809 LUTs and delay 8.10 ns

Results

- Several repeated squarers were synthesized for Spartan-3A and Virtex-5 FPGAs (see the paper)
- The results show that repeated squarers are small and fast enough to be included in existing finite field processors

Example (NIST $\mathbb{F}_{2^{233}}$, Virtex-5)

Solution 1 with $\{1, 2, 4, 8, 16\}$: area 1823 LUTs and delay 8.23 ns Solution 2 with $0 \le e \le 11$: area 1809 LUTs and delay 8.10 ns

Inversions in binary fields

- Fermat's Little Theorem $\Rightarrow a^{-1}(x) = a^{2^m-2}(x)$
- Computed with a series of multiplications and (repeated) squarings
- Itoh and Tsujii: $\lfloor \log_2(m-1) \rfloor + w(m-1) 1$ multiplications and m-1 squarings

Example (Inversion in $\mathbb{F}_{2^{233}}$)

Computed with 10 multiplications and 232 squarings A repeated squarer (solution 1) with $e \in \{1, 2, 4, 8, 16\}$ gives the following speedups with different multiplier latencies: $M = 18 \Rightarrow 52\%$, $M = 6 \Rightarrow 73\%$, and $M = 1 \Rightarrow 88\%$ (19 repeated squarings instead of 232 squarings)

Inversions in binary fields

- Fermat's Little Theorem $\Rightarrow a^{-1}(x) = a^{2^m-2}(x)$
- Computed with a series of multiplications and (repeated) squarings
- Itoh and Tsujii: ⌊log₂(m − 1)⌋ + w(m − 1) − 1 multiplications and m − 1 squarings

Example (Inversion in $\mathbb{F}_{2^{233}}$)

Computed with 10 multiplications and 232 squarings A repeated squarer (solution 1) with $e \in \{1, 2, 4, 8, 16\}$ gives the following speedups with different multiplier latencies: $M = 18 \Rightarrow 52\%$, $M = 6 \Rightarrow 73\%$, and $M = 1 \Rightarrow 88\%$ (19 repeated squarings instead of 232 squarings)

Scalar multiplication on Koblitz curves

- Scalar multiplication on Koblitz curves, kP where $k = \sum_{i=0}^{\ell-1} k_i \tau^i$, computed with the binary algorithm: w(k) point additions and $\ell 1$ Frobenius maps
- Frobenius map: $(x, y) \mapsto (x^2, y^2)$
- e successive Frobenius maps can be computed with two repeated squarings: (x^{2^e}, y^{2^e})

Example (Scalar multiplication on NIST K-233)

k given in width-2 $\tau NAF \Rightarrow w(k) \approx m/3$ Point addition takes 8M + 13 clock cycles (based on existing work) and we have a repeated squarer (solution 2) with $0 \le e \le 11$: Speedups: $M = 17 \Rightarrow 3.8\%$, $M = 8 \Rightarrow 7.0\%$, and $M = 5 \Rightarrow 9.7\%$

Scalar multiplication on Koblitz curves

- Scalar multiplication on Koblitz curves, kP where $k = \sum_{i=0}^{\ell-1} k_i \tau^i$, computed with the binary algorithm: w(k) point additions and $\ell 1$ Frobenius maps
- Frobenius map: $(x, y) \mapsto (x^2, y^2)$
- e successive Frobenius maps can be computed with two repeated squarings: (x^{2^e}, y^{2^e})

Example (Scalar multiplication on NIST K-233)

k given in width-2 $\tau NAF \Rightarrow w(k) \approx m/3$ Point addition takes 8M + 13 clock cycles (based on existing work) and we have a repeated squarer (solution 2) with $0 \le e \le 11$: Speedups: $M = 17 \Rightarrow 3.8\%$, $M = 8 \Rightarrow 7.0\%$, and $M = 5 \Rightarrow 9.7\%$

Side-channel resistivity

Problem

Computing *e* Frobenius maps takes 2*e* clock cycles which can be distinguished simply by counting clock cycles from the power trace (confer, weaknesses of the normal binary algorithm). \Rightarrow Leaks the positions of nonzero k_i

Solution

Use repeated squarers

 \Rightarrow the attacker sees only a series of point additions and (two) repeated squarings

 \Rightarrow the attacker must be able to disinguish *e* from the power trace of the repeated squarer (one clock cycle)

Side-channel resistivity

Problem

Computing *e* Frobenius maps takes 2*e* clock cycles which can be distinguished simply by counting clock cycles from the power trace (confer, weaknesses of the normal binary algorithm). \Rightarrow Leaks the positions of nonzero k_i

Solution

Use repeated squarers

 \Rightarrow the attacker sees only a series of point additions and (two) repeated squarings

 \Rightarrow the attacker must be able to disinguish *e* from the power trace of the repeated squarer (one clock cycle)

Summary

A new component called repeated squarer computing $a^{2^{e}}(x)$ directly in one clock cycle was introduced

- Small and fast enough to be used in existing finite field processors on FPGAs
- Improves the speed of inversion and scalar multiplication on Koblitz curves
- Enhances resistivity against side-channel attacks

Thank you. Questions?

