On Repeated Squarings in Binary Fields

Kimmo Järvinen

Department of Information and Computer Science
Helsinki University of Technology
August 14, 2009

Introduction

Repeated squaring

- Repeated squaring: $a^{2^{e}}(x)$ where $a(x) \in \mathbb{F}_{2^{m}}$ with polynomial basis
- Applications in elliptic curve cryptography (e.g., inversions in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAs)

- Popular implementation platforms for cryptography
- Existing repeated squarers iterate squaring for e times

Introduction

Repeated squaring

- Repeated squaring: $a^{2^{e}}(x)$ where $a(x) \in \mathbb{F}_{2^{m}}$ with polynomial basis
- Applications in elliptic curve cryptography (e.g., inversions in the field and scalar multiplications on Koblitz curves)

Field-programmable gate arrays (FPGAs)

- Popular implementation platforms for cryptography
- Existing repeated squarers iterate squaring for e times
- How to implement efficient repeated squarers with FPGAs?

Repeated squaring in binary fields

Squaring is $a^{2}(x)=\sum_{i=0}^{m-1} a_{i} x^{2 i} \bmod p(x)$ where $a_{i} \in\{0,1\}$ and $p(x)$ is an irreducible polynomial

A linear transformation described by Qa where
$\mathbf{a}=\left[a_{0} a_{1} \ldots a_{m-1}\right]^{T}$ and

A repeated squaring is given by $\mathbf{Q}^{e} \mathbf{a}$

Repeated squaring in binary fields

Squaring is $a^{2}(x)=\sum_{i=0}^{m-1} a_{i} x^{2 i} \bmod p(x)$ where $a_{i} \in\{0,1\}$ and $p(x)$ is an irreducible polynomial

A linear transformation described by Qa where
$\mathbf{a}=\left[a_{0} a_{1} \ldots a_{m-1}\right]^{T}$ and

$$
\mathbf{Q}=\left[\begin{array}{ccccc}
1 & q_{0,1} & q_{0,2} & \cdots & q_{0, m-1} \\
0 & q_{1,1} & q_{1,2} & \cdots & q_{1, m-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & q_{m-1,1} & q_{m-1,2} & \cdots & q_{m-1, m-1}
\end{array}\right]
$$

A repeated squaring is given by $\mathbf{Q}^{e} \mathbf{a}$

Look-up tables (LUTs)

- Basic building block of an FPGA is an n-to-1 bit look-up table (n-LUT)
- Typically, $n=4$ but contemporary FPGAs have larger n, e.g., $n=6$ (Xilinx Virtex-5) or $n=7$ (Altera Stratix-II, and beyond)
- Notice that using only two inputs of an n-LUT costs as much as using all of its inputs

Definitions

Definition (Weight and row-weight)

Weight, $\mathcal{W}\left(\mathbf{Q}^{e}\right)$, is the number of ones in \mathbf{Q}^{e}; and Row-weight, $\mathcal{W}_{i}\left(\mathbf{Q}^{e}\right)$, is the number of ones on the $i^{\text {th }}$ row of \mathbf{Q}^{e}

Definition (Area)

Area, $\mathcal{A}\left(\mathbf{Q}^{e}\right)$, is the number of n-LUTs required to implement \mathbf{Q}^{e}

Definition (Critical path)

Critical path, $\mathcal{D}\left(\mathbf{Q}^{e}\right)$, is the length of the longest path of consecutive n-LUTs in the circuit computing \mathbf{Q}^{e}

Weights of the NIST fields

Area and delay

Area

It is possible to implement \mathbf{Q}^{e} with a circuit whose area $\mathcal{A}_{n}\left(\mathbf{Q}^{e}\right)$ satisfies

$$
\mathcal{A}_{n}\left(\mathbf{Q}^{e}\right) \leq \sum_{i=1}^{m}\left\lceil\frac{\mathcal{W}_{i}\left(\mathbf{Q}^{e}\right)-1}{n-1}\right\rceil
$$

Delay

Critical path, $\mathcal{D}_{n}\left(\mathbf{Q}^{e}\right)$, is bounded by

$$
\mathcal{D}_{n}\left(\mathbf{Q}^{e}\right) \leq \max \left\lceil\log _{n} \mathcal{W}_{i}\left(\mathbf{Q}^{e}\right)\right\rceil
$$

Area and delay

Area

It is possible to implement \mathbf{Q}^{e} with a circuit whose area $\mathcal{A}_{n}\left(\mathbf{Q}^{e}\right)$ satisfies

$$
\mathcal{A}_{n}\left(\mathbf{Q}^{e}\right) \leq \sum_{i=1}^{m}\left\lceil\frac{\mathcal{W}_{i}\left(\mathbf{Q}^{e}\right)-1}{n-1}\right\rceil
$$

Delay

Critical path, $\mathcal{D}_{n}\left(\mathbf{Q}^{e}\right)$, is bounded by

$$
\mathcal{D}_{n}\left(\mathbf{Q}^{e}\right) \leq \max _{i}\left\lceil\log _{n} \mathcal{W}_{i}\left(\mathbf{Q}^{e}\right)\right\rceil
$$

Example

Consider computing $a^{2^{2}}(x)$ in $\mathbb{F}_{2}[x] / x^{4}+x+1$. We have

$$
\mathbf{Q}^{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Weights: $\mathcal{W}\left(\mathbf{Q}^{2}\right)=9$ and $\mathcal{W}_{1}\left(\mathbf{Q}^{2}\right)=4, \mathcal{W}_{2}\left(\mathbf{Q}^{2}\right)=2$, $\mathcal{W}_{3}\left(\mathbf{Q}^{2}\right)=2$, and $\mathcal{W}_{4}\left(\mathbf{Q}^{2}\right)=1$.
- Area: if $n=2$, we get $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right) \leq 5$ (minimum $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right)=4$). If $n=4$, we get $\mathcal{A}_{4}\left(\mathbf{Q}^{2}\right)=3$
- Delay: if $n=2$, we get $\mathcal{D}_{2}\left(\mathbf{Q}^{2}\right)=2$ and $D_{4}\left(Q^{2}\right)=1$.

Example

Consider computing $a^{2^{2}}(x)$ in $\mathbb{F}_{2}[x] / x^{4}+x+1$. We have

$$
\mathbf{Q}^{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Weights: $\mathcal{W}\left(\mathbf{Q}^{2}\right)=9$ and $\mathcal{W}_{1}\left(\mathbf{Q}^{2}\right)=4, \mathcal{W}_{2}\left(\mathbf{Q}^{2}\right)=2$, $\mathcal{W}_{3}\left(\mathbf{Q}^{2}\right)=2$, and $\mathcal{W}_{4}\left(\mathbf{Q}^{2}\right)=1$.
- Area: if $n=2$, we get $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right) \leq 5$ (minimum $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right)=4$). If $n=4$, we get $\mathcal{A}_{4}\left(\mathbf{Q}^{2}\right)=3$

Example

Consider computing $a^{2^{2}}(x)$ in $\mathbb{F}_{2}[x] / x^{4}+x+1$. We have

$$
\mathbf{Q}^{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Weights: $\mathcal{W}\left(\mathbf{Q}^{2}\right)=9$ and $\mathcal{W}_{1}\left(\mathbf{Q}^{2}\right)=4, \mathcal{W}_{2}\left(\mathbf{Q}^{2}\right)=2$, $\mathcal{W}_{3}\left(\mathbf{Q}^{2}\right)=2$, and $\mathcal{W}_{4}\left(\mathbf{Q}^{2}\right)=1$.
- Area: if $n=2$, we get $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right) \leq 5$ (minimum $\mathcal{A}_{2}\left(\mathbf{Q}^{2}\right)=4$). If $n=4$, we get $\mathcal{A}_{4}\left(\mathbf{Q}^{2}\right)=3$
- Delay: if $n=2$, we get $\mathcal{D}_{2}\left(\mathbf{Q}^{2}\right)=2$ and $\mathcal{D}_{4}\left(\mathbf{Q}^{2}\right)=1$.

Example

Table: Areas and delays for NIST $\mathbb{F}_{2^{233}}$ with different n

n	$\mathcal{A}_{n}\left(\mathbf{Q}^{e}\right)$						$\mathcal{D}_{n}\left(\mathbf{Q}^{e}\right)$					
	2	3	4	5	6	7	2	3	4	5	6	7
$e=1$	153	153	153	153	153	153	1	1	1	1	1	1
$e=2$	361	245	230		230	230	2	2	2	1	1	1
$e=3$	676	385	349	238	233	233	3	2	2	2	1	1
$e=4$	1141	616	466	358	349	291	4	3	2	2	2	2
$e=5$	1844	973	699	550	466	396	4	3	2	2	2	2
$e=6$	2892	1511	1035	812	663	580	5	3	3	2	2	2

Implementation: Idea

Rather than

- iterating a squarer for e clock cycles,
- computing Q^{e} directly, or
- using unrolled squarers ($\mathbf{Q}\|\mathbf{Q}\| \ldots \| \mathbf{Q}$, e times)
we search a concatenation $\mathbf{Q}^{e_{1}}\left\|\mathbf{Q}^{\boldsymbol{e}_{2}}\right\| \ldots \| \mathbf{Q}^{\boldsymbol{e}_{N}}$ with $e=\sum_{i=1}^{N} e_{i}$ minimizing the metric under optimization (area, delay, etc.)

```
Example
If }\textrm{Q}=9\mathrm{ and }n=6\mathrm{ , the setup minimizing area is }\mp@subsup{Q}{}{3}|\mp@subsup{Q}{}{3}|\mp@subsup{Q}{}{3}\mathrm{ which
has an area estimate of 699 LUTs and a critical path of 3 LUTs.
(Iterative: 153 LUTs + }233\mathrm{ regs / 9 cycles, Direct: 1944 / 3 LUTs,
Square chain: 1377 /9 LUTs)
```


Implementation: Idea

Rather than

- iterating a squarer for e clock cycles,
- computing \mathbf{Q}^{e} directly, or
- using unrolled squarers $(\mathbf{Q}\|\mathbf{Q}\| \ldots \| \mathbf{Q}$, e times)

\square

Implementation: Idea

Rather than

- iterating a squarer for e clock cycles,
- computing \mathbf{Q}^{e} directly, or
- using unrolled squarers $(\mathbf{Q}\|\mathbf{Q}\| \ldots \| \mathbf{Q}$, e times)
we search a concatenation $\mathbf{Q}^{e_{1}}\left\|\mathbf{Q}^{e_{2}}\right\| \ldots \| \mathbf{Q}^{e_{N}}$ with $e=\sum_{i=1}^{N} e_{i}$ minimizing the metric under optimization (area, delay, etc.)

Implementation: Idea

Rather than

- iterating a squarer for e clock cycles,
- computing \mathbf{Q}^{e} directly, or
- using unrolled squarers $(\mathbf{Q}\|\mathbf{Q}\| \ldots \| \mathbf{Q}$, e times)
we search a concatenation $\mathbf{Q}^{e_{1}}\left\|\mathbf{Q}^{e_{2}}\right\| \ldots \| \mathbf{Q}^{e_{N}}$ with $e=\sum_{i=1}^{N} e_{i}$ minimizing the metric under optimization (area, delay, etc.)

Example

> If $e=9$ and $n=6$, the setup minimizing area is $\mathbf{Q}^{3}\left\|\mathbf{Q}^{3}\right\| \mathbf{Q}^{3}$ which has an area estimate of 699 LUTs and a critical path of 3 LUTs. (Iterative: 153 LUTs +233 regs /9 cycles, Direct: $1944 / 3$ LUTs, Square chain: $1377 / 9$ LUTs)

Implementation: Varying exponent

Solution 1 (Distinct exponents, $\left\{e_{1}, \ldots, e_{\ell}\right\}$)

- Let $\Delta_{i}=e_{i}-e_{i-1}$
- Find the optimal circuits for each Δ_{i} and concatenate them
- Select results using a multiplexer

Example

If $E=\{1,2,4,8,16\}$ and $n=6$, we get the repeated squarer shown below with an area estimate of 1600 LUTs.

Implementation: Varying exponent

Solution 2 (Range, $0 \leq e \leq e_{\max }$)

- Let $e_{\text {opt }}$ be the exponent that minimizes $\mathcal{A}_{n}\left(\mathbf{Q}^{\hat{e}}\right) / \hat{e}$
- Concatenate $\left\lfloor e_{\text {max }} / e_{\text {opt }}\right\rfloor \mathbf{Q}^{e_{\text {opt }}}$ blocks
- Compute the remaining squarings with a square chain

Example

If $0 \leq e \leq 14$ and $n=6$, we get the repeated squarer shown below with an area estimate of 1238 LUTs.

Results

- Several repeated squarers were synthesized for Spartan-3A and Virtex-5 FPGAs (see the paper)
- The results show that repeated squarers are small and fast enough to be included in existing finite field processors

Results

- Several repeated squarers were synthesized for Spartan-3A and Virtex-5 FPGAs (see the paper)
- The results show that repeated squarers are small and fast enough to be included in existing finite field processors

Example (NIST $\mathbb{F}_{2}{ }_{2}{ }^{233}$, Virtex-5)
 Solution 1 with $\{1,2,4,8,16\}$: area 1823 LUTs and delay 8.23 ns Solution 2 with $0 \leq e \leq 11$: area 1809 LUTs and delay 8.10 ns

Inversions in binary fields

- Fermat's Little Theorem $\Rightarrow a^{-1}(x)=a^{2^{m}-2}(x)$
- Computed with a series of multiplications and (repeated) squarings
- Itoh and Tsujii: $\left\lfloor\log _{2}(m-1)\right\rfloor+w(m-1)-1$ multiplications and $m-1$ squarings

Inversions in binary fields

- Fermat's Little Theorem $\Rightarrow a^{-1}(x)=a^{2^{m}-2}(x)$
- Computed with a series of multiplications and (repeated) squarings
- Itoh and Tsujii: $\left\lfloor\log _{2}(m-1)\right\rfloor+w(m-1)-1$ multiplications and $m-1$ squarings

Example (Inversion in $\mathbb{F}_{2 \text { 2з3 }}$)

Computed with 10 multiplications and 232 squarings A repeated squarer (solution 1) with $e \in\{1,2,4,8,16\}$ gives the following speedups with different multiplier latencies: $M=18 \Rightarrow 52 \%, M=6 \Rightarrow 73 \%$, and $M=1 \Rightarrow 88 \%$ (19 repeated squarings instead of 232 squarings)

Scalar multiplication on Koblitz curves

- Scalar multiplication on Koblitz curves, $k P$ where $k=\sum_{i=0}^{\ell-1} k_{i} \tau^{i}$, computed with the binary algorithm: $w(k)$ point additions and $\ell-1$ Frobenius maps
- Frobenius map: $(x, y) \mapsto\left(x^{2}, y^{2}\right)$
- e successive Frobenius maps can be computed with two repeated squarings: $\left(x^{2^{e}}, y^{2^{e}}\right)$

Scalar multiplication on Koblitz curves

- Scalar multiplication on Koblitz curves, $k P$ where $k=\sum_{i=0}^{\ell-1} k_{i} \tau^{i}$, computed with the binary algorithm: $w(k)$ point additions and $\ell-1$ Frobenius maps
- Frobenius map: $(x, y) \mapsto\left(x^{2}, y^{2}\right)$
- e successive Frobenius maps can be computed with two repeated squarings: $\left(x^{2^{e}}, y^{2^{e}}\right)$

Example (Scalar multiplication on NIST K-233)

k given in width $-2 \tau N A F \Rightarrow w(k) \approx m / 3$
Point addition takes $8 M+13$ clock cycles (based on existing work) and we have a repeated squarer (solution 2) with $0 \leq e \leq 11$:
Speedups: $M=17 \Rightarrow 3.8 \%, M=8 \Rightarrow 7.0 \%$, and $M=5 \Rightarrow 9.7 \%$

Side-channel resistivity

Problem

Computing e Frobenius maps takes $2 e$ clock cycles which can be distinguished simply by counting clock cycles from the power trace (confer, weaknesses of the normal binary algorithm). \Rightarrow Leaks the positions of nonzero k_{i}

```
Solution
Use repeated squarers
=> the attacker sees only a series of point additions and (two)
repeated squarings
=> the attacker must be able to disinguish e from the power
trace of the repeated squarer (one clock cycle)
```


Side-channel resistivity

Problem

Computing e Frobenius maps takes $2 e$ clock cycles which can be distinguished simply by counting clock cycles from the power trace (confer, weaknesses of the normal binary algorithm).
\Rightarrow Leaks the positions of nonzero k_{i}

Solution

Use repeated squarers
\Rightarrow the attacker sees only a series of point additions and (two) repeated squarings
\Rightarrow the attacker must be able to disinguish e from the power trace of the repeated squarer (one clock cycle)

Summary

A new component called repeated squarer computing $a^{2^{e}}(x)$ directly in one clock cycle was introduced

- Small and fast enough to be used in existing finite field processors on FPGAs
- Improves the speed of inversion and scalar multiplication on Koblitz curves
- Enhances resistivity against side-channel attacks

Thank you. Questions?

