High-Speed Elliptic Curve Cryptography Accelerator for Koblitz Curves

Kimmo Järvinen Jorma Skyttä

Helsinki University of Technology Department of Signal Processing and Acoustics Otakaari 5A, FIN-02150, Finland {Kimmo.Jarvinen, Jorma.Skytta}@tkk.fi

April 14, 2008

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ < </p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

FPGA Implementation

Results, Comparisons and Conclusions

Outline

1) F

Preliminaries

- Elliptic Curve Cryptography
- Koblitz Curves
- Window Method and Multiple Point Multiplication
- PFGA Implementation
 - Design Specifications
 - Architecture of the Implementation
- 8 Results, Comparisons and Conclusions
 - Results
 - Comparisons
 - Conclusions and Future Work

Preliminaries	
00000	

Results, Comparisons and Conclusions

Introduction to Elliptic Curve Cryptography

- Public-key cryptography method which uses a group of points on an elliptic curve, *E*, defined over a finite field, F_q
- Faster and shorter keys than, e.g., RSA

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ < </p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Results, Comparisons and Conclusions

Introduction to Elliptic Curve Cryptography

- Public-key cryptography method which uses a group of points on an elliptic curve, *E*, defined over a finite field, F_q
- Faster and shorter keys than, e.g., RSA

Elliptic Curve Point Multiplication

$$Q = kP$$

where *k* is a positive integer and P = (x, y) is a point on *E*

• Computed with point additions, $P_1 + P_2$, and point doublings, $2P_1$

Results, Comparisons and Conclusions

Point Multiplication on Koblitz Curves

Koblitz curves

Frobenius maps, $\phi(P_1)$, instead of point doublings

- \Rightarrow faster computation
 - k must be converter to τ -adic representation

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ > < ⊙ <</p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Results, Comparisons and Conclusions $_{\rm OOO}$

Point Multiplication on Koblitz Curves

Koblitz curves

Frobenius maps, $\phi(P_1)$, instead of point doublings

- \Rightarrow faster computation
 - k must be converter to τ -adic representation

Point multiplication

- Frobenius map for all bits of k
- Point addition if the bit is 1

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ < </p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Results, Comparisons and Conclusions $_{\rm OOO}$

Point Multiplication on Koblitz Curves

Koblitz curves

Frobenius maps, $\phi(P_1)$, instead of point doublings

- \Rightarrow faster computation
 - k must be converter to τ -adic representation

Point multiplication

- Frobenius map for all bits of k
- Point addition if the bit is 1

Example

1001110001001111001

Α ΑΑΑ Α ΑΑΑΑ Α 10

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ ➤ ✓ 团 ➤ ✓ 필 ➤ ✓ 필 ➤ ○ ♀
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Point Multiplication on Koblitz Curves

Koblitz curves

Frobenius maps, $\phi(P_1)$, instead of point doublings

- \Rightarrow faster computation
 - k must be converter to τ -adic representation

Point multiplication

- Frobenius map for all bits of k
- Point addition if the bit is 1, point subtraction if 1

Example

1001110001001111001

10 A AAA A AAAA A

1010010001010001001 AASAA SA7

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

・ロト ・ 同ト ・ ヨト ・ ヨト K. Järvinen, J. Skyttä — Helsinki University of Technology

ъ

Window Method

FPGA Implementation

Results, Comparisons and Conclusions

Windowing further reduces the number of point additions

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ → ✓ □ → ✓ □ → ✓ □ → ○ Q
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Results, Comparisons and Conclusions

Windowing further reduces the number of point additions

Idea of windowing

Window Method

Instead of computing AAA several times:

- Precompute AAA
- Use the precomputed value every time for the string 111!

We precompute values for the strings 101, 101, and 1001

Results, Comparisons and Conclusions

Window Method

Windowing further reduces the number of point additions

Idea of windowing

Instead of computing AAA several times:

- Precompute AAA
- Use the precomputed value every time for the string 111!

We precompute values for the strings 101, 101, and 1001

Example										
τ NAF Width-4 τ N 10101000100100100101 301000000						<i>⊤</i> NAF 000700	00500	005		
A S A	S	А	A A	SS	9	A A	S	А	S	5
Precomputations:					3					

FPGA Implementation

Results, Comparisons and Conclusions

Multiple Point Multiplication

Sum of *n* point multiplications

$$Q = k^{(1)} P^{(1)} + k^{(2)} P^{(2)} + \ldots + k^{(n)} P^{(n)}$$

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ < </p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Results, Comparisons and Conclusions

Multiple Point Multiplication

Sum of *n* point multiplications

$$Q = k^{(1)} P^{(1)} + k^{(2)} P^{(2)} + \ldots + k^{(n)} P^{(n)}$$

Efficient computation with Shamir's trick

- Precompute all combinations of P⁽¹⁾...P⁽ⁿ⁾. e.a. $P^{(1)} + P^{(2)}$ and $P^{(1)} - P^{(2)}$
- Interpret $k^{(1)} \dots k^{(n)}$ as *n*-row table, e.g. 1001001010101010 101001001010010
- Frobenius map for all columns
- Point addition with precomputed point if column is nonzero

1

FPGA Implementation

Results, Comparisons and Conclusions

Multiple Point Multiplication

Sum of *n* point multiplications

$$Q = k^{(1)} P^{(1)} + k^{(2)} P^{(2)} + \ldots + k^{(n)} P^{(n)}$$

Efficient computation with Shamir's trick

- Precompute all combinations of $P^{(1)} \dots P^{(n)}$, e.g. $P^{(1)} + P^{(2)}$ and $P^{(1)} P^{(2)}$
- Interpret $k^{(1)} \dots k^{(n)}$ as *n*-row table, e.g. $\frac{100100\overline{1}01001010}{10\overline{1}010010010}$
- Frobenius map for all columns
- Point addition with precomputed point if column is nonzero

τ -adic joint sparse form (τ JSF)

 τJSF maximizes the number of zero columns in the table

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

Algorithmic Comparison

Window method

Input: Integer k, point P **Output:** Result point Q = kP $\langle k_{\ell-1}...k_0 \rangle \leftarrow w \cdot \tau \mathsf{NAF}(k)$ $P_1, P_3, \dots, P_{2^{W-1}-1} \leftarrow \operatorname{PreC}(P)$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Multiple point multiplication

Input: *n* integers $k^{(i)}$, *n* points $P^{(i)}$ **Output:** Result point $Q = \sum_{i=1}^{n} k^{(i)} P^{(i)}$ $\langle k_{\ell-1}...k_0 \rangle \leftarrow \tau \mathsf{JSF}(k^{(1)},...,k^{(n)})$ $P_1, P_2, ..., P_{(3^n-1)/2} \leftarrow \mathsf{PreC}(P^{(1)},...,P^{(n)})$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Algorithmic Comparison

Window method

Input: Integer k, point P **Output:** Result point Q = kP $\langle k_{\ell-1}...k_0 \rangle \leftarrow w - \tau \mathsf{NAF}(k)$ $P_1, P_3, \dots, P_{2^{W-1}-1} \leftarrow \operatorname{PreC}(P)$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Multiple point multiplication

Input: *n* integers $k^{(i)}$, *n* points $P^{(i)}$ **Output:** Result point $Q = \sum_{i=1}^{n} k^{(i)} P^{(i)}$ $\langle k_{\ell-1}...k_0 \rangle \leftarrow \tau \mathsf{JSF}(k^{(1)},...,k^{(n)})$ $P_1, P_2, ..., P_{(3^n-1)/2} \leftarrow \operatorname{PreC}(P^{(1)}, ..., P^{(n)})$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Algorithmic Comparison

Window method

Input: Integer k, point P **Output:** Result point Q = kP $\langle k_{\ell-1}...k_0 \rangle \leftarrow w - \tau \mathsf{NAF}(k)$ $P_1, P_3, \dots, P_{2^{W-1}-1} \leftarrow \operatorname{PreC}(P)$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Multiple point multiplication

Input: *n* integers $k^{(i)}$, *n* points $P^{(i)}$ **Output:** Result point $Q = \sum_{i=1}^{n} k^{(i)} P^{(i)}$ $\langle k_{\ell-1}...k_0 \rangle \leftarrow \tau \mathsf{JSF}(k^{(1)},...,k^{(n)})$ $P_1, P_2, ..., P_{(3^n-1)/2} \leftarrow \operatorname{PreC}(P^{(1)}, ..., P^{(n)})$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Algorithmic Comparison

Window method

Input: Integer k, point P **Output:** Result point Q = kP $\langle k_{\ell-1}...k_0 \rangle \leftarrow w - \tau \mathsf{NAF}(k)$ $P_1, P_3, \dots, P_{2^{W-1}-1} \leftarrow \operatorname{PreC}(P)$ $Q \leftarrow Q$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Multiple point multiplication

Input: *n* integers $k^{(i)}$, *n* points $P^{(i)}$ **Output:** Result point $Q = \sum_{i=1}^{n} k^{(i)} P^{(i)}$ $\langle k_{\ell-1}...k_0 \rangle \leftarrow \tau \mathsf{JSF}(k^{(1)},...,k^{(n)})$ $P_1, P_2, ..., P_{(3^n-1)/2} \leftarrow \mathsf{PreC}(P^{(1)},...,P^{(n)})$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

1

Algorithmic Comparison

Window method

Input: Integer k, point P **Output:** Result point Q = kP $\langle k_{\ell-1}...k_0 \rangle \leftarrow w \cdot \tau \mathsf{NAF}(k)$ $P_1, P_3, \dots, P_{2^{W-1}-1} \leftarrow \operatorname{PreC}(P)$ $Q \leftarrow Q$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Multiple point multiplication

Input: *n* integers $k^{(i)}$, *n* points $P^{(i)}$ **Output:** Result point $Q = \sum_{i=1}^{n} k^{(i)} P^{(i)}$ $\langle k_{\ell-1}...k_0 \rangle \leftarrow \tau \mathsf{JSF}(k^{(1)},...,k^{(n)})$ $P_1, P_2, ..., P_{(3^n-1)/2} \leftarrow \mathsf{PreC}(P^{(1)},...,P^{(n)})$ $Q \leftarrow O$ for $i = \ell - 1$ down to 0 do $Q \leftarrow \phi(Q)$ if $k_i \neq 0$ then $Q \leftarrow Q + \operatorname{sign}(k_i) P_{|k_i|}$ end if end for $Q \leftarrow xy(Q)$

Results, Comparisons and Conclusions $_{\rm OOO}$

Objectives of the Implementation

Specifications

- NIST K-163, Koblitz curve
- Finite field $\mathbb{F}_{2^{163}}$ with polynomial basis
- (Multiple) point multiplications with n = 1, n = 2, and n = 3
- FPGAs offer combination of high-speed and flexibility
- Primary application: Proof-of-concept implementation for Packet-Level Authentication (PLA) communication scheme

Results, Comparisons and Conclusions $_{\rm OOO}$

Objectives of the Implementation

Specifications

- NIST K-163, Koblitz curve
- Finite field $\mathbb{F}_{2^{163}}$ with polynomial basis
- (Multiple) point multiplications with n = 1, n = 2, and n = 3
- FPGAs offer combination of high-speed and flexibility
- Primary application: Proof-of-concept implementation for Packet-Level Authentication (PLA) communication scheme

Design Principles

Maximize throughput and maintain low computation time

Results, Comparisons and Conclusions $_{\rm OOO}$

Objectives of the Implementation

Specifications

- NIST K-163, Koblitz curve
- Finite field $\mathbb{F}_{2^{163}}$ with polynomial basis
- (Multiple) point multiplications with n = 1, n = 2, and n = 3
- FPGAs offer combination of high-speed and flexibility
- Primary application: Proof-of-concept implementation for Packet-Level Authentication (PLA) communication scheme

Design Principles

Maximize throughput and maintain low computation time by...

- Utilizing the common structure of the algorithms
- Osing specific processing units from our previous works

FPGA Implementation 2000

Results, Comparisons and Conclusions

Top Level Architecture

Specialized processing units

- τ NAF/JSF converter \Rightarrow Width-4 τ NAF or 2/3-term τ JSF
- Preprocessor ⇒ Precomputations
- Main processor ⇒ For loop
- Postprocessor \Rightarrow Coordinate conversion, xy(Q)

э

Main Processor: Idea

Background

- Point additions computed sequentially
- Data dependencies prevent efficient parallelization in point additions

$$\begin{aligned} (X_3, Y_3, Z_3) &= (X_1, Y_1, Z_1) + (x_2, y_2) : \\ A &= Y_1 + y_2 Z_1^2; \quad B = X_1 + x_2 Z_1 \\ C &= B Z_1; \quad Z_3 = C^2; \quad D = x_2 Z_3 \\ X_3 &= A^2 + C(A + B^2 + aC) \\ Y_3 &= (D + X_3)(AC + Z_3) + (y_2 + x_2) Z_3^2 \end{aligned}$$

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

イロト イポト イヨト イヨト K. Järvinen, J. Skyttä — Helsinki University of Technology

э

Results, Comparisons and Conclusions

Main Processor: Idea

Background

- Point additions computed sequentially
- Data dependencies prevent efficient parallelization in point additions

$$\begin{aligned} (X_3, Y_3, Z_3) &= (X_1, Y_1, Z_1) + (x_2, y_2) : \\ A &= Y_1 + y_2 Z_1^2; \quad B = X_1 + x_2 Z_1 \\ C &= B Z_1; \quad Z_3 = C^2; \quad D = x_2 Z_3 \\ X_3 &= A^2 + C(A + B^2 + aC) \\ Y_3 &= (D + X_3)(AC + Z_3) + (y_2 + x_2) Z_3^2 \end{aligned}$$

Idea

 Most operations do not need Y_1

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

ヘロト 人間 ト ヘヨト ヘヨト K. Järvinen, J. Skyttä — Helsinki University of Technology

ъ

Results, Comparisons and Conclusions

Main Processor: Idea

Background

- Point additions computed sequentially
- Data dependencies prevent efficient parallelization in point additions

Idea

- Most operations do not need Y₁
- Point additions (and Frobenius maps) can be interleaved

$$\begin{aligned} (X_3, Y_3, Z_3) &= (X_1, Y_1, Z_1) + (x_2, y_2) : \\ A &= Y_1 + y_2 Z_1^2; \quad B = X_1 + x_2 Z_1 \\ C &= B Z_1; \quad Z_3 = C^2; \quad D = x_2 Z_3 \\ X_3 &= A^2 + C(A + B^2 + aC) \\ Y_3 &= (D + X_3)(AC + Z_3) + (y_2 + x_2) Z_3^2 \end{aligned}$$

 $Z_{0/1}$: Computation of Z_3 $X_{0/1}$: Computation of X_3 \mathcal{Y}_{0-3} : Computation of Y_3 $Z_0 Z_1$ Z_0 1:1 Z_0 Z_1 2: χ_0 \mathcal{X}_1 \mathcal{X}_0 χ_1 \mathcal{X}_1 χ_0 χ_0 3: $\mathcal{Y}_2 \mid \mathcal{Y}_0$ \mathcal{Y}_0 \mathcal{Y}_2 \mathcal{Y}_0 \mathcal{Y}_2 \mathcal{Y}_0 \mathcal{Y}_2 \mathcal{Y}_1 \mathcal{Y}_3 \mathcal{Y}_1 \mathcal{Y}_3 $\mathcal{Y}_1 \mid \mathcal{Y}_3$ $\mathcal{Y}_1 \mid \mathcal{Y}_3$ 4:

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

K. Järvinen, J. Skyttä — Helsinki University of Technology

ヘロト ヘアト ヘヨト ヘ

FPGA Implementation

Results, Comparisons and Conclusions

Main Processor: Implementation

Implementation strategy

Design coordinate-specific processing units build around field multipliers with latencies: multiplication + 1

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

K. Järvinen, J. Skyttä - Helsinki University of Technology

Pre	lim	ina	
00	00		

Results, Comparisons and Conclusions

Optimizations

- The design includes 6 finite field multipliers: Preprocessor 1 Main processor 4 Postprocessor 1
- Multiplier digit size, D, defines both latency and area

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

✓ □ > < 团 > < 필 > < 필 > < 필 > < Ξ > < Ξ < </p>
 K. Järvinen, J. Skyttä — Helsinki University of Technology

Pre	lim	ina	
00	00		

Results, Comparisons and Conclusions

Optimizations

- The design includes 6 finite field multipliers: Preprocessor 1 Main processor 4 Postprocessor 1
- Multiplier digit size, D, defines both latency and area

Left: preprocessor, Middle: main processor, Right: postprocessor

Results from Quartus II 6.0 SP1

Area consumption in Stratix II S180C3									
	Component	ALUTs	Regs.	ALMs	M4Ks				
	Converter	4,906	2,862	2,862	7				
	Preprocessor	2,037	1,546	1,332	14				
	Main processor	16,642	10,045	10,930	0				
	Postprocessor	2,874	2,336	1,953	0				
	Total	26,616	16,966	16,930	21				

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

(日) (四) (日) (日) (日) K. Järvinen, J. Skyttä - Helsinki University of Technology

ъ

Results from Quartus II 6.0 SP1

rea consumption in Stratix II S180C3								
	Component	ALUTs	Regs.	ALMs	M4Ks			
	Converter	4,906	2,862	2,862	7			
	Preprocessor	2,037	1,546	1,332	14			
	Main processor	16,642	10,045	10,930	0			
	Postprocessor	2,874	2,336	1,953	0			
	Total	26,616	16,966	16,930	21			

Computation time and throughput

Operation	Time (μ s)	Throughput (ops)
Window, $w = 4$	16.36	161,290
Multiple, n = 2	24.28	70,773
Multiple, <i>n</i> = 3	35.06	60,603

FCCM 2008, April 14–15, 2008, Palo Alto, CA, USA

K. Järvinen, J. Skyttä - Helsinki University of Technology

Comparisons

FPGA-based implementations using NIST K-163

Ref.	n	Device	Area	μ S	ops
Dimitrov	1	VirII	6,494 slices + memory	35.75	27,972
Järvinen ¹	3	Str. II	67,467 ALMs + memory	114.2	166,000
Järvinen ²	1	Str. II	13,472 ALMs + memory	25.81	49,318
Lutz	1	VirE	10,017 LUTs, 1,930 FFs	75	13,333
Okada	1	F. 10K		45600	22
Ours	1	Str. II	16,930 ALMs, 21 M4Ks	16.36	161,290
Ours	3	Str. II	16,930 ALMs, 21 M4Ks	35.06	60,603

- Faster than other published implementations
- Only 1/4 of area compared to Järvinen¹ ⇒ 4 × 60,603 ≈ 242,000 ⇒ Speedup 46 %

Comparisons

FPGA-based implementations using NIST K-163

Ref.	n	Device	Area	μ S	ops
Dimitrov	1	VirII	6,494 slices + memory	35.75	27,972
Järvinen ¹	3	Str. II	67,467 ALMs + memory	114.2	166,000
Järvinen ²	1	Str. II	13,472 ALMs + memory	25.81	49,318
Lutz	1	VirE	10,017 LUTs, 1,930 FFs	75	13,333
Okada	1	F. 10K		45600	22
Ours	1	Str. II	16,930 ALMs, 21 M4Ks	16.36	161,290
Ours	3	Str. II	16,930 ALMs, 21 M4Ks	35.06	60,603

- Faster than other published implementations
- Only 1/4 of area compared to Järvinen¹ \Rightarrow 4 × 60, 603 \approx 242, 000 \Rightarrow Speedup 46 %

Results, Comparisons and Conclusions $_{\odot \odot \bullet}$

Conclusions and Future Work

Conclusions

We showed that very high throughput and low computation time are achievable with reasonable cost in modern FPGAs by...

- Selecting the most efficient algorithms (Koblitz curves, window methods, multiple point multiplications)
- Utilizing the common structure of the algorithms
- Pipelining carefully optimized dedicated processing units

Results, Comparisons and Conclusions $_{\odot \odot \bullet}$

Conclusions and Future Work

Conclusions

We showed that very high throughput and low computation time are achievable with reasonable cost in modern FPGAs by...

- Selecting the most efficient algorithms (Koblitz curves, window methods, multiple point multiplications)
- Utilizing the common structure of the algorithms
- Pipelining carefully optimized dedicated processing units

Future work

We will study at least the following aspects...

 Other field sizes, faster *τ*NAF/JSF converter, latency-area product optimizations, side-channel resistivity, etc.

ヘロト ヘアト ヘヨト ヘ

Thank you. **Questions?**

FCCM 2008, April 14-15, 2008, Palo Alto, CA, USA

イロト イポト イヨト イヨト K. Järvinen, J. Skyttä - Helsinki University of Technology

э