

Elliptic curve cryptography on FPGAs: How fast can we go with a single chip?

Kimmo Järvinen

Department of Information and Computer Science Aalto University, Finland kimmo.jarvinen@aalto.fi

ERSA 2011, Las Vegas, NV, USA, July 18-21, 2011

Contents

- 1. What we are computing
- 2. How we do it and what kind of optimizations are used
- 3. The results which show that this is the fastest published ECC implementation

Contents

- 1. What we are computing
- 2. How we do it and what kind of optimizations are used
- 3. The results which show that this is the fastest published ECC implementation
- Explaining ECC requires some math but I try to keep it in minimum; See the paper for exact definitions and equations if you're interested

Contents

- 1. What we are computing
- 2. How we do it and what kind of optimizations are used
- 3. The results which show that this is the fastest published ECC implementation
 - Explaining ECC requires some math but I try to keep it in minimum; See the paper for exact definitions and equations if you're interested
 - Work that is based on several of my previous publications. Especially, K. Järvinen: "Optimized FPGA-based elliptic curve cryptography processor for high-speed applications," Integration—the VLSI Journal, to appear

Fast cryptography with FPGAs

FPGAs very good platforms for cryptography¹

Example

Architecture efficiency:

Reprogrammability allows optimizing for specific parameters because if parameters change, we can change the design

¹Wollinger et al., ACM Trans. Embed. Comput. Syst. 3(3):534-574, 2004

Fast cryptography with FPGAs

FPGAs very good platforms for cryptography¹

Example

Architecture efficiency:

Reprogrammability allows optimizing for specific parameters because if parameters change, we can change the design

 In this work, we fix the curve to a standardized curve NIST K-163 (both the curve and the underlying finite field is fixed)

¹Wollinger et al., ACM Trans. Embed. Comput. Syst. 3(3):534-574, 2004

Preliminaries (mathematical background)

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- The encryption key y is derived from the decryption key x in a one-way manner
- Hence, y can be public if x remains private

Example

- Exponentiation: $y = g^x \mod p$
- y = 3^x mod 19
- Discrete logarithm problem (DLP): $x = \log_q(y) \mod p$

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on *E* form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E

- Points on E form an additive Abelian group
- We can compute additions: R = P + Q so that P, Q, R are points on E
- EC DLP: Given P and Q = kP determine k
- Elliptic curve cryptosystems analogous to systems based on DLP
- ► DLP is much harder in EC groups ⇒ Shorter keys!

Scalar multiplication: Q = kP

► Point operations: Point addition and point doubling Example (point addition): (x₃, y₃) = (x₁, y₁) + (x₂, y₂)

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2; \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

- Scalar multiplication: Q = kP
- ► Point operations: Point addition and point doubling Example (point addition): (x₃, y₃) = (x₁, y₁) + (x₂, y₂)

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2; \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

 Field operations: Multiplication, addition, subtraction, inversion
 Example (multiplication)

 $c = a \times b \mod p$, where $a, b, c \in [0, p - 1]$ and p is prime

The width of the operands is typically [160, 600]

Scalar multiplication:
$$Q = kP$$

► Point operations: Point addition and point doubling Example (point addition): (x₃, y₃) = (x₁, y₁) + (x₂, y₂)

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2; \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

 Field operations: Multiplication, addition, subtraction, inversion
 Example (multiplication)

 $c = a \times b \mod p$, where $a, b, c \in [0, p-1]$ and p is prime

The width of the operands is typically [160, 600]

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example

 $Q = 19593P = (10011001001001)_2P$

 \Rightarrow

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example

$$Q = 19593P = (100110010001001)_2P$$
$$\Rightarrow P =$$

Ρ

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example

$$Q = 19593P = (100110010001001)_2P$$

 $\Rightarrow \qquad 2^3P + P = 9P$

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example

$$Q = 19593P = (100110010001001)_2P$$

$$\Rightarrow \qquad 2^7P + 2^3P + P = 137P$$

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example

$$Q = 19593P = (100110010001001)_2P$$

$$\Rightarrow \qquad 2^{10}P + 2^7P + 2^3P + P = 1161P$$

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example $Q = 19593P = (100110010001001)_2P$ $\Rightarrow 2^{11}P + 2^{10}P + 2^7P + 2^3P + P = 3209P$

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example $Q = 19593P = (100110010001001)_2P$ $\Rightarrow 2^{14}P + 2^{11}P + 2^{10}P + 2^7P + 2^3P + P = 19593P$

- Scalar multiplication is the main operation in all EC cryptosystem: Q = kP
- Double-and-add algorithm: Point doubling P ← 2P for all k_i; and Point addition Q ← Q + P if k_i = 1

Example $Q = 19593P = (100110010001001)_2P$ $\Rightarrow 2^{14}P + 2^{11}P + 2^{10}P + 2^7P + 2^3P + P = 19593P$ Only 14 point doublings and 5 point additions

In practice, k is 100–600 bits long; in our case, log₂(k) ≈ 160 and we need ~160 point doublings and ~80 point additions

Hierarchy

Koblitz curves

 Special elliptic curves over binary fields (binary polynomials modulo an irreducible polynomial)

Koblitz curves

- Special elliptic curves over binary fields (binary polynomials modulo an irreducible polynomial)
- If the point (x, y) is on the curve, then also (x², y²) is on the curve

⇒ Point doublings can be replaced with $\phi(P) = (x^2, y^2)$ operations! Squaring is cheap in binary fields!

But, k must be represented in τ-adic form: k = ∑ k_iτⁱ where τ ∈ C (instead of binary form ∑ k_i2ⁱ)

Koblitz curves

- Special elliptic curves over binary fields (binary polynomials modulo an irreducible polynomial)
- ► If the point (x, y) is on the curve, then also (x², y²) is on the curve

⇒ Point doublings can be replaced with $\phi(P) = (x^2, y^2)$ operations! Squaring is cheap in binary fields!

- But, k must be represented in *τ*-adic form: k = ∑ k_iτⁱ where τ ∈ ℂ (instead of binary form ∑ k_i2ⁱ)
- Scalar multiplication: $k_{\ell-1}\phi^{\ell-1}P + \ldots + k_1\phi P + k_0P$
 - Compute \u03c6(P) (very cheap!) instead of point doublings
 - Otherwise, the algorithm is similar
- We need a converter!

Hierarchy (Normal curves)

Hierarchy (Koblitz curves)

Processor architecture

Elliptic curve processor for Koblitz curves

Computations on Koblitz curves are performed with:

- Conversion for k
- Scalar multiplication

Elliptic curve processor for Koblitz curves

Computations on Koblitz curves are performed with:

- Conversion for k
- Precomputations with the base point P
- Scalar multiplication with the precomputed points

Elliptic curve processor for Koblitz curves

Computations on Koblitz curves are performed with:

- Conversion for k
- Precomputations with the base point P
- Scalar multiplication with the precomputed points in projective coordinates (P = (X, Y, Z))
- Mapping from (X, Y, Z) back to (x, y)

8 multiplications, critical path 4 multiplications

8 multiplications, critical path 4 multiplications

$$Q \leftarrow Q + P =$$

 $(X, Y, Z) + (x, y)$

- 8 multiplications, critical path 4 multiplications
- With 4 multipliers, critical path 2 multiplications / p. addition

Point addition: $Q \leftarrow Q + P =$ (X, Y, Z) + (x, y)

- 8 multiplications, critical path 4 multiplications
- With 4 multipliers, critical path 2 multiplications / p. addition

$$Q \leftarrow Q + P =$$

 $(X, Y, Z) + (x, y)$

Parallelization

- The strategy is to replicate *T* processors with maximum throughput / area ratio
- For example, we can fit
 T = 5 processors in a
 Stratix IV GX230 FPGA

Results & conclusions

Results

Table: Results on Stratix IV GX EP4SGX230KF40C2.

ALUTs	78,695 (43%)
Regs	61,871 (34%)
ALMs	74,750 (82%)
M9K	105 (9%)
Clock, converter	120 MHz
Clock, others	266 MHz
Time	8.3 μ s
Throughput	1,693,000

Summary

FPGA-based implementation of ECC that...

- 1. ... is the fastest published implementation (almost 1,700,000 scalar multiplication / sec.)
- 2. ... is optimized for a specific curve on every level
- 3. ... uses a lot of parallelism
- 4. ... relies on reprogrammability of FPGAs (fixed and highly optimized implementations would be impractical without reprogrammability)

Thank you!² Questions?

²... and thanks to Emil Aaltonen Foundation for a grant covering the expenses of this trip!

