KU LEUVEN

Lightweight Coprocessor for Koblitz Curves:

283-bit ECC Including Scalar Conversion with only 4300 Gates

S. Sinha Roy, K. Järvinen, I. Verbauwhede

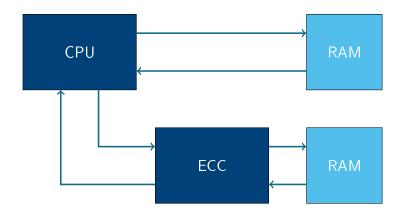
KU Leuven ESAT/COSIC Leuven, Belgium

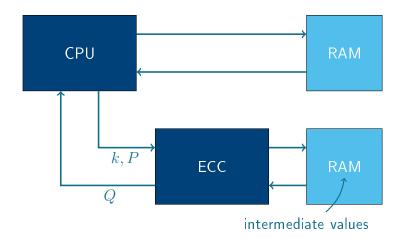
CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

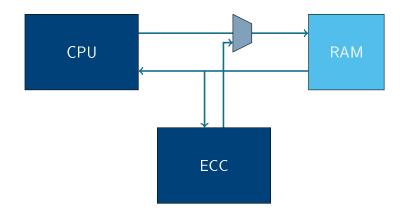
Introduction 2/17

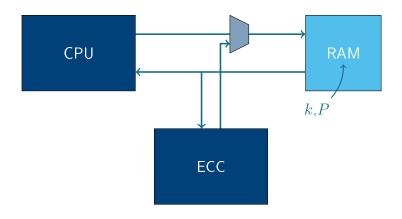
We present a lightweight coprocessor for the 283-bit Koblitz curve

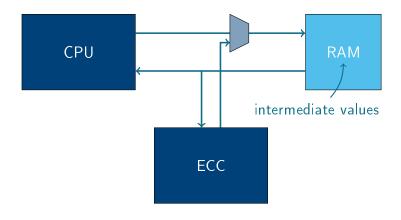
- The first lightweight implementation of a high security curve
- The first to include on-the-fly lightweight conversion
- One of the smallest ECC coprocessors
- A large set of side-channel countermeasures

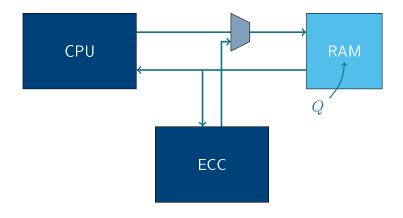






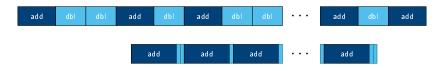




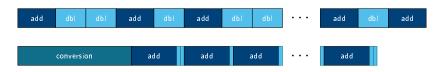


• Binary curves which are included in many standards (e.g., NIST)

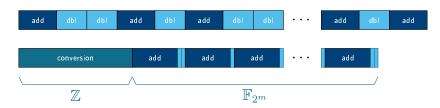
- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps: $\phi:(x,y)\mapsto (x^2,y^2)$



- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps: $\phi: (x,y) \mapsto (x^2,y^2)$
- ... but first the integer k needs to be converted to a τ -adic expansion $k=\sum_{i=0}^{\ell-1}k_i\tau^i$ where $\tau=(\mu+\sqrt{-7})/2\in\mathbb{C}$



- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps: $\phi: (x,y) \mapsto (x^2,y^2)$
- ... but first the integer k needs to be converted to a τ -adic expansion $k = \sum_{i=0}^{\ell-1} k_i \tau^i$ where $\tau = (\mu + \sqrt{-7})/2 \in \mathbb{C}$

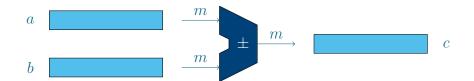


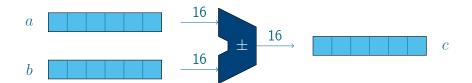
Secure Lightweight Conversion

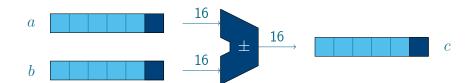
- Our conversion algorithms are based on:
 - (1) the lazy reduction by Brumley and Järvinen
 - (2) the zero-free expansion by Okeya, Takagi, and Vuillaume

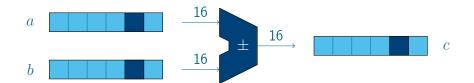
- Our conversion algorithms are based on:
 - (1) the lazy reduction by Brumley and Järvinen
 - (2) the zero-free expansion by Okeya, Takagi, and Vuillaume
 - ⇒ Only (multiprecision) additions and subtractions

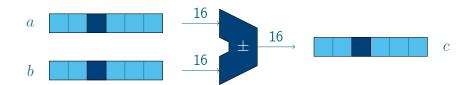
```
(1): Integer k to \rho = b_0 + b_1 \tau
(a_0, a_1) \leftarrow (1, 0), (b_0, b_1) \leftarrow (0, 0),
(d_0, d_1) \leftarrow (k, 0)
for i=0 to m-1 do
      u \leftarrow d_0 \bmod 2
      d_0 \leftarrow d_0 - u
      (b_0, b_1) \leftarrow (b_0 + u \cdot a_0, b_1 + u \cdot a_1)
      (d_0, d_1) \leftarrow (d_1 - d_0/2, -d_0/2)
  (a_0, a_1) \leftarrow (-2a_1, a_0 - a_1)
\rho = (b_0, b_1) \leftarrow (b_0 + d_0, b_1 + d_1)
```

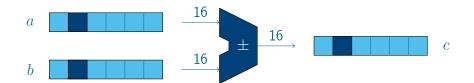


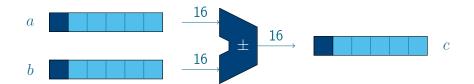


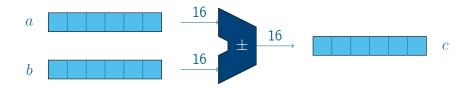




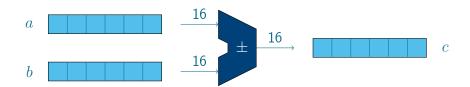








• Negations (e.g., $-d_0/2$) take about 1/3 of cycles

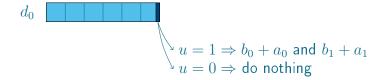


- Negations (e.g., $-d_0/2$) take about 1/3 of cycles
 - \Rightarrow We use the modification $(d_0/2-d_1,d_0/2)$ instead of $(d_1-d_0/2,-d_0/2)$
 - ⇒ The signs will be incorrect but can be corrected

$$b_i + u \cdot a_i$$
, where $u = d_0 \bmod 2 \in \{0, 1\}$

$$d_0$$

$$b_i + u \cdot a_i$$
, where $u = d_0 \bmod 2 \in \{0, 1\}$



Bad SPA leakage!

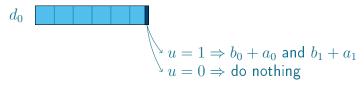
$$b_i+u\cdot a_i, \text{ where } u=d_0 \bmod 2 \in \{0,1\}$$

$$d_0$$

$$u=1\Rightarrow b_0+a_0 \text{ and } b_1+a_1$$

$$u=0\Rightarrow \text{ do nothing}$$

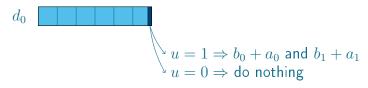
$$b_i + u \cdot a_i$$
, where $u = d_0 \bmod 2 \in \{0, 1\}$



Bad SPA leakage!

 $\qquad \qquad \textbf{We select} \,\, u \in \{-1,1\} \,\, \text{by using} \,\, \Psi(d_0+d_1\tau)$

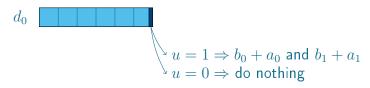
$$b_i + u \cdot a_i$$
, where $u = d_0 \bmod 2 \in \{0, 1\}$



Bad SPA leakage!

- **②** We select $u \in \{-1, 1\}$ by using $\Psi(d_0 + d_1 \tau)$
 - $u = +1 \Rightarrow b_0 + a_0$ and $b_1 + a_1$
 - \bullet $u=-1 \Rightarrow b_0-a_0$ and b_1-a_1

$$b_i + u \cdot a_i$$
, where $u = d_0 \bmod 2 \in \{0, 1\}$



Bad SPA leakage!

- **②** We select $u \in \{-1, 1\}$ by using $\Psi(d_0 + d_1 \tau)$
 - $u = +1 \Rightarrow b_0 + a_0$ and $b_1 + a_1$
 - $u=-1 \Rightarrow b_0-a_0$ and b_1-a_1
 - Similar operations ⇒ Increased SPA resistance!

Point Multiplication

Zero-free τ -adic expansion [Okeya et al, 2005]

A au-adic representation that represents k with $k_i \in \{-1, 1\}$

Example

$$1\bar{1}\bar{1}1111\bar{1}111\bar{1}\bar{1}\bar{1}\dots 1\bar{1}11$$

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

$$w = 2$$
:
 $P_{+1} = \phi(P) + P$
 $P_{-1} = \phi(P) - P$

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

$$w = 2$$
:
 $P_{+1} = \phi(P) + P$
 $P_{-1} = \phi(P) - P$

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - ⇒ Constant pattern of point operations

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

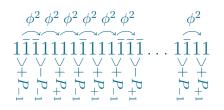
- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- ullet Combined with w-bit windows and precomputations
 - \Rightarrow Fast point multiplication of only ℓ/w point additions
 - ⇒ Constant pattern of point operations



$$w = 2$$
:
 $P_{+1} = \phi(P) + P$
 $P_{-1} = \phi(P) - P$

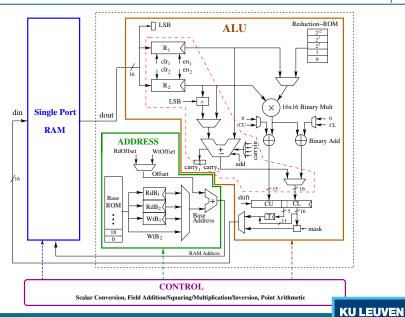
- Point additions and subtractions are computed in two phases:
 - (1) To add (x,y) set $(x_p,y_p,y_m) \leftarrow (x,y,x+y)$, to subtract (x,y) set $(x_p,y_m,y_p) \leftarrow (x,y,x+y)$
 - (2) Add (x_p, y_p, y_m)

- Point additions and subtractions are computed in two phases:
 - (1) To add (x,y) set $(x_p,y_p,y_m) \leftarrow (x,y,x+y)$, to subtract (x,y) set $(x_p,y_m,y_p) \leftarrow (x,y,x+y)$
 - (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z)=(xr,yr^2,r)$, where r is random

- Point additions and subtractions are computed in two phases:
 - (1) To add (x,y) set $(x_p,y_p,y_m) \leftarrow (x,y,x+y)$, to subtract (x,y) set $(x_p,y_m,y_p) \leftarrow (x,y,x+y)$
 - (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z)=(xr,yr^2,r)$, where r is random
- The expansion is expanded up to (almost) constant length

- Point additions and subtractions are computed in two phases:
 - (1) To add (x,y) set $(x_p,y_p,y_m) \leftarrow (x,y,x+y)$, to subtract (x,y) set $(x_p,y_m,y_p) \leftarrow (x,y,x+y)$
 - (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z)=(xr,yr^2,r)$, where r is random
- The expansion is expanded up to (almost) constant length
- The attacker can obtain only a single trace from the conversion

Architecture and Results



We synthesized the design (coprocessor, not RAM) for UMC 130 nm CMOS with Synopsys Design Compiler

- 4,323 GE
- 1,566,000 clock cycles (incl. conversion)
- 97.89 ms (@16 MHz)
- 97.70 μW (@16 MHz)
- 9.56 μJ (@16 MHz)

Work	Curve	RAM	Area (GE)	Latency (cycles)	Latency (ms)	Power (µW)
Batina'06	B-163	no	9,926	95,159	190.32	<60
Bock'08	B-163	yes	12,876	_	95	93
Hein'08	B-163	yes	13,250	296,299	2,792	80.85
Kumar'06	B-163	yes	16,207	376,864	27.90	n/a
Lee'08	B-163	yes	12,506	275,816	244.08	32.42
Wegner'11	B-163	yes	8,958	286,000	2,860	32.34
Wegner'13	B-163	no	4,114	467,370	467.37	66.1
Pessl'14	P-160	yes	12,448	139,930	139.93	42.42
Azarderakhsh'14	K-163	yes	11,571	106,700	7.87	5.7
Our, est.	B-163	no	≈3,773	≈485,000	≈30.31	≈6.11
Our, est.	K-163	no	≈4,323	≈420,900	≈26.30	\approx 6.11
Our, est.	B-283	no	≈3,773	≈1,934,000	≈120.89	\approx 6.11
Our, est.	K-283	yes*	10,204*	1,566,000	97.89	>6.11
Our	K-283	no	4,323	1,566,000	97.89	6.11

 $[\]star$ Estimate for a 256×16 -bit RAM, space needed for 252 16-bit words (4032 bits)

- 283-bit curves are feasible for lightweight implementations
 - ⇒ The price to pay comes mainly in latency and memory requirements

- 283-bit curves are feasible for lightweight implementations
 - ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 - \Rightarrow Lead to savings in latency and energy consumption

- 283-bit curves are feasible for lightweight implementations
 - ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 - ⇒ Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves
 - \Rightarrow Area of the memory becomes less of an issue

- 283-bit curves are feasible for lightweight implementations
 - ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 - ⇒ Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves
 - \Rightarrow Area of the memory becomes less of an issue

Future work

• Careful validation of resistance against side-channel attacks

Thank you! Questions?