

Lightweight Coprocessor for Koblitz Curves:
283-bit ECC Including Scalar Conversion with only 4300 Gates
S. Sinha Roy, K. Järvinen, I. Verbauwhede KU Leuven ESAT/COSIC Leuven, Belgium

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

We present a lightweight coprocessor for the 283-bit Koblitz curve

- The first lightweight implementation of a high security curve
- The first to include on-the-fly lightweight conversion
- One of the smallest ECC coprocessors
- A large set of side-channel countermeasures

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point multiplication $Q=k P$:

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

- Binary curves which are included in many standards (e.g., NIST)

Example (Point multiplication $Q=k P$)

| add | dbl | dbl | add | dbl | add | dbl | dbl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015
KU LEUVEN

- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps: $\phi:(x, y) \mapsto\left(x^{2}, y^{2}\right)$

Example (Point multiplication $Q=k P$)

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps:

$$
\phi:(x, y) \mapsto\left(x^{2}, y^{2}\right)
$$

- ... but first the integer k needs to be converted to a τ-adic expansion $k=\sum_{i=0}^{\ell-1} k_{i} \tau^{i}$ where $\tau=(\mu+\sqrt{-7}) / 2 \in \mathbb{C}$

Example (Point multiplication $Q=k P$)

add	dbl	dbl	add	dbl	add	dbl	dbl	\ldots	add	dbl
add										
conversion			add	add	add	\ldots	add			

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

- Binary curves which are included in many standards (e.g., NIST)
- Point doublings can be replaced with cheap Frobenius maps:

$$
\phi:(x, y) \mapsto\left(x^{2}, y^{2}\right)
$$

- ... but first the integer k needs to be converted to a τ-adic expansion $k=\sum_{i=0}^{\ell-1} k_{i} \tau^{i}$ where $\tau=(\mu+\sqrt{-7}) / 2 \in \mathbb{C}$

Example (Point multiplication $Q=k P$)

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Secure Lightweight Conversion

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015
KULEUVEN

Conversions Algorithms

- Our conversion algorithms are based on:
(1) the lazy reduction by Brumley and Järvinen
(2) the zero-free expansion by Okeya, Takagi, and Vuillaume

Conversions Algorithms

- Our conversion algorithms are based on:
(1) the lazy reduction by Brumley and Järvinen
(2) the zero-free expansion by Okeya, Takagi, and Vuillaume \Rightarrow Only (multiprecision) additions and subtractions
(1): Integer k to $\rho=b_{0}+b_{1} \tau$
$\left(a_{0}, a_{1}\right) \leftarrow(1,0),\left(b_{0}, b_{1}\right) \leftarrow(0,0)$,
$\left(d_{0}, d_{1}\right) \leftarrow(k, 0)$
for $i=0$ to $m-1$ do

$$
\begin{aligned}
& \qquad \begin{array}{l}
u \leftarrow d_{0} \bmod 2 \\
d_{0} \leftarrow d_{0}-u \\
\left(b_{0}, b_{1}\right) \leftarrow\left(b_{0}+u \cdot a_{0}, b_{1}+u \cdot a_{1}\right) \\
\left(d_{0}, d_{1}\right) \leftarrow\left(d_{1}-d_{0} / 2,-d_{0} / 2\right) \\
\left(a_{0}, a_{1}\right) \leftarrow\left(-2 a_{1}, a_{0}-a_{1}\right)
\end{array} \\
& \rho=\left(b_{0}, b_{1}\right) \leftarrow\left(b_{0}+d_{0}, b_{1}+d_{1}\right)
\end{aligned}
$$

(2): ρ to τ-adic exp.

$i \leftarrow 0$
while $\left|b_{0}\right| \neq 1$ or $b_{1} \neq 0$ do
$u \leftarrow \Psi\left(b_{0}+b_{1} \tau\right)$
$b_{0} \leftarrow b_{0}-u$
$\left(b_{0}, b_{1}\right) \leftarrow\left(b_{1}-b_{0} / 2,-b_{0} / 2\right)$
$t_{i} \leftarrow u$
$i \leftarrow i+1$
$t_{i} \leftarrow b_{0}$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

(1) Negations (e.g., $-d_{0} / 2$) take about $1 / 3$ of cycles

Modifications for Efficiency and Improved Security

(1) Negations (e.g., $-d_{0} / 2$) take about $1 / 3$ of cycles
\Rightarrow We use the modification $\left(d_{0} / 2-d_{1}, d_{0} / 2\right)$
instead of $\left(d_{1}-d_{0} / 2,-d_{0} / 2\right)$
\Rightarrow The signs will be incorrect but can be corrected

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Modifications for Efficiency and Improved Security (cont.) 8/17

$$
b_{i}+u \cdot a_{i}, \text { where } u=d_{0} \bmod 2 \in\{0,1\}
$$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Modifications for Efficiency and Improved Security (cont.) 8/17

$$
b_{i}+u \cdot a_{i}, \text { where } u=d_{0} \bmod 2 \in\{0,1\}
$$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Modifications for Efficiency and Improved Security (cont.) 8/17

$$
b_{i}+u \cdot a_{i}, \text { where } u=d_{0} \bmod 2 \in\{0,1\}
$$

Bad SPA leakage!

Modifications for Efficiency and Improved Security (cont.) 8/17

$$
b_{i}+u \cdot a_{i} \text {, where } u=d_{0} \bmod 2 \in\{0,1\}
$$

Bad SPA leakage!
(2) We select $u \in\{-1,1\}$ by using $\Psi\left(d_{0}+d_{1} \tau\right)$

Modifications for Efficiency and Improved Security (cont.) 8/17

$$
b_{i}+u \cdot a_{i} \text {, where } u=d_{0} \bmod 2 \in\{0,1\}
$$

$$
u=1 \Rightarrow b_{0}+a_{0} \text { and } b_{1}+a_{1}
$$

$$
u=0 \Rightarrow \text { do nothing }
$$

Bad SPA leakage!
(2) We select $u \in\{-1,1\}$ by using $\Psi\left(d_{0}+d_{1} \tau\right)$

- $u=+1 \Rightarrow b_{0}+a_{0}$ and $b_{1}+a_{1}$
- $u=-1 \Rightarrow b_{0}-a_{0}$ and $b_{1}-a_{1}$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Modifications for Efficiency and Improved Security (cont.) 8/17

$b_{i}+u \cdot a_{i}$, where $u=d_{0} \bmod 2 \in\{0,1\}$

$u=1 \Rightarrow b_{0}+a_{0}$ and $b_{1}+a_{1}$
$u=0 \Rightarrow$ do nothing
Bad SPA leakage!
(2) We select $u \in\{-1,1\}$ by using $\Psi\left(d_{0}+d_{1} \tau\right)$

- $u=+1 \Rightarrow b_{0}+a_{0}$ and $b_{1}+a_{1}$
- $u=-1 \Rightarrow b_{0}-a_{0}$ and $b_{1}-a_{1}$
- Similar operations \Rightarrow Increased SPA resistance!

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Point Multiplication

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

Example

$1 \overline{1} 1111 \overline{1} 111 \overline{1} \overline{1} \overline{1} \ldots . .1 \overline{1} 11$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{array}{ll}
& w=2: \\
1 \overline{1} \overline{1} 1111 \overline{1} 111 \overline{1} \overline{1} \overline{1} \ldots 1 \overline{1} 11 & \begin{array}{l}
P_{+1}=\phi(P)+P \\
P_{-1}=\phi(P)-P
\end{array}
\end{array}
$$

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
1 \overline{1} 11111 \overline{1} 111 \overline{1} \overline{1} \overline{1} \ldots . . .1 \overline{1} 11
$$

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations
\Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

Zero-free τ-adic expansion [Okeya et al, 2005]
A τ-adic representation that represents k with $k_{i} \in\{-1,1\}$

- Combined with w-bit windows and precomputations \Rightarrow Fast point multiplication of only ℓ / w point additions
\Rightarrow Constant pattern of point operations

Example

$$
\begin{aligned}
& w=2: \\
& P_{+1}=\phi(P)+P \\
& P_{-1}=\phi(P)-P
\end{aligned}
$$

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

- Point additions and subtractions are computed in two phases:
(1) To add (x, y) set $\left(x_{p}, y_{p}, y_{m}\right) \leftarrow(x, y, x+y)$, to subtract (x, y) set $\left(x_{p}, y_{m}, y_{p}\right) \leftarrow(x, y, x+y)$
(2) Add $\left(x_{p}, y_{p}, y_{m}\right)$
- Point additions and subtractions are computed in two phases:
(1) To add (x, y) set $\left(x_{p}, y_{p}, y_{m}\right) \leftarrow(x, y, x+y)$, to subtract (x, y) set $\left(x_{p}, y_{m}, y_{p}\right) \leftarrow(x, y, x+y)$
(2) Add $\left(x_{p}, y_{p}, y_{m}\right)$
- The accumulator point is randomized as shown by Coron: $(X, Y, Z)=\left(x r, y r^{2}, r\right)$, where r is random
- Point additions and subtractions are computed in two phases:
(1) To add (x, y) set $\left(x_{p}, y_{p}, y_{m}\right) \leftarrow(x, y, x+y)$, to subtract (x, y) set $\left(x_{p}, y_{m}, y_{p}\right) \leftarrow(x, y, x+y)$
(2) Add $\left(x_{p}, y_{p}, y_{m}\right)$
- The accumulator point is randomized as shown by Coron: $(X, Y, Z)=\left(x r, y r^{2}, r\right)$, where r is random
- The expansion is expanded up to (almost) constant length
- Point additions and subtractions are computed in two phases:
(1) To add (x, y) set $\left(x_{p}, y_{p}, y_{m}\right) \leftarrow(x, y, x+y)$, to subtract (x, y) set $\left(x_{p}, y_{m}, y_{p}\right) \leftarrow(x, y, x+y)$
(2) Add $\left(x_{p}, y_{p}, y_{m}\right)$
- The accumulator point is randomized as shown by Coron: $(X, Y, Z)=\left(x r, y r^{2}, r\right)$, where r is random
- The expansion is expanded up to (almost) constant length
- The attacker can obtain only a single trace from the conversion

Architecture and Results

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

We synthesized the design (coprocessor, not RAM) for UMC 130 nm CMOS with Synopsys Design Compiler

- 4,323 GE
- 1,566,000 clock cycles (incl. conversion)
- 97.89 ms (@16 MHz)
- $97.70 \mu \mathrm{~W}(@ 16 \mathrm{MHz})$
- $9.56 \mu \mathrm{~J}(@ 16 \mathrm{MHz})$

Results and Comparisons (Cont.)

Work	Curve	RAM	Area (GE)	Latency $($ cycles $)$	Latency $(\mathbf{m s})$	Power $(\mu \mathbf{W})$
Batina'06	$\mathrm{B}-163$	no	9,926	95,159	190.32	<60
Bock'08	$\mathrm{B}-163$	yes	12,876	-	95	93
Hein'08	$\mathrm{B}-163$	yes	13,250	296,299	2,792	80.85
Kumar'06	$\mathrm{B}-163$	yes	16,207	376,864	27.90	n / a
Lee'08	$\mathrm{B}-163$	yes	12,506	275,816	244.08	32.42
Wegner'11	$\mathrm{B}-163$	yes	8,958	286,000	2,860	32.34
Wegner'13	$\mathrm{B}-163$	no	4,114	467,370	467.37	66.1
Pessl'14	$\mathrm{P}-160$	yes	12,448	139,930	139.93	42.42
Azarderakhsh'14	$\mathrm{K}-163$	yes	11,571	106,700	7.87	5.7
Our, est.	$\mathrm{B}-163$	no	$\approx 3,773$	$\approx 485,000$	≈ 30.31	≈ 6.11
Our, est.	$\mathrm{K}-163$	no	$\approx 4,323$	$\approx 420,900$	≈ 26.30	≈ 6.11
Our, est.	$\mathrm{B}-283$	no	$\approx 3,773$	$\approx 1,934,000$	≈ 120.89	≈ 6.11
Our, est.	$\mathrm{K}-283$	yes*	$10,204^{\star}$	$1,566,000$	97.89	>6.11
Our	$\mathrm{K}-283$	no	$\mathbf{4 , 3 2 3}$	$\mathbf{1 , 5 6 6 , 0 0 0}$	97.89	$\mathbf{6 . 1 1}$

\star Estimate for a 256×16-bit RAM, space needed for 252 16-bit words (4032 bits)

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

We showed that

- 283-bit curves are feasible for lightweight implementations
\Rightarrow The price to pay comes mainly in latency and memory requirements

We showed that

- 283-bit curves are feasible for lightweight implementations
\Rightarrow The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations \Rightarrow Lead to savings in latency and energy consumption

We showed that

- 283-bit curves are feasible for lightweight implementations
\Rightarrow The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
\Rightarrow Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves \Rightarrow Area of the memory becomes less of an issue

We showed that

- 283-bit curves are feasible for lightweight implementations
\Rightarrow The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations \Rightarrow Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves \Rightarrow Area of the memory becomes less of an issue
Future work
- Careful validation of resistance against side-channel attacks

Thank you! Questions?

CHES 2015, Saint-Malo, France, Sept. 13-16, 2015

