FPGA Design of Self-certified Signature Verification on Koblitz Curves

Kimmo Järvinen Juha Forsten Jorma Skyttä

Helsinki University of Technology
Signal Processing Laboratory
Otakaari 5A, FIN-02150, Finland
\{Kimmo.Jarvinen, Juha. Forsten, Jorma.Skytta\}@tkk.fi

September 12, 2007

Outline

(1) Preliminaries

- Introduction
- Koblitz curves
- Signatures
(2) Algorithms and Implementation
- Point multiplication
- Precomputation
- Implementation

3 Results and Discussion

- Results on an FPGA
- Conclusions and future work

Introduction

- Packet Level Authentication (PLA) ${ }^{1}$
- Enormous speed requirements!
- Elliptic curve cryptography because short signatures and fast performance are needed
- Koblitz curve, NIST K-163, used to maximize speed
- Self-certified ID based signatures because they are short and computationally less complex

[^0]
Introduction

- Packet Level Authentication (PLA) ${ }^{1}$
- Enormous speed requirements!
- Elliptic curve cryptography because short signatures and fast performance are needed
- Koblitz curve, NIST K-163, used to maximize speed
- Self-certified ID based signatures because they are short and computationally less complex
- Development in FPGA technology
- Growth in resources enables massive parallelization
- Point multiplication times $<100 \mu$ s have been reported
- We focus on maximizing operations per second instead of minimizing computation time of a single operation

[^1]
Koblitz curves

- Koblitz curves have the form

$$
E_{K}: y^{2}+x y=x^{3}+a x^{2}+1
$$

- If $P=(x, y)$ is a point on E_{K}, then its Frobenius endomorphism, $\phi(P)=\left(x^{2}, y^{2}\right)$, is also on E_{K}.
- Very efficient point multiplication
- Integer presented in τ-adic non-adjacent form (NAF) ${ }^{2}$
- Point doublings replaced by Frobenius maps
- Only m/3 point additions

[^2]
Self-certified identity based signatures

- Used in the current version of the PLA
- Signature verification is the most critical operation

Self-certified identity based signatures

- Used in the current version of the PLA
- Signature verification is the most critical operation

Signature verification
A signature is verified by computing:

$$
\begin{gathered}
W_{A}=\operatorname{DECOMPRESS}\left(r_{A}-\operatorname{HASH}\left(I D_{A}\right), b_{A}\right)-r_{A} W_{D}, \text { and } \\
\operatorname{HASH}(\mathcal{M})=c-\left[d G+c W_{A}\right]_{x} \quad(\bmod r)
\end{gathered}
$$

Self-certified identity based signatures

- Used in the current version of the PLA
- Signature verification is the most critical operation

Signature verification
A signature is verified by computing:

$$
\begin{gathered}
W_{A}=\operatorname{DECOMPRESS}\left(r_{A}-\operatorname{HASH}\left(I D_{A}\right), b_{A}\right)-r_{A} W_{D}, \text { and } \\
\operatorname{HASH}(\mathcal{M})=c-\left[d G+c W_{A}\right]_{x}(\bmod r)
\end{gathered}
$$

which simplify into the 3-term point multiplication:

$$
d G+c(u G)-c r_{A} W_{D}
$$

Self-certified identity based signatures

- Used in the current version of the PLA
- Signature verification is the most critical operation

Signature verification
A signature is verified by computing:

$$
\begin{gathered}
W_{A}=\operatorname{DECOMPRESS}\left(r_{A}-\operatorname{HASH}\left(I D_{A}\right), b_{A}\right)-r_{A} W_{D}, \text { and } \\
\operatorname{HASH}(\mathcal{M})=c-\left[d G+c W_{A}\right]_{x}(\bmod r)
\end{gathered}
$$

which simplify into the 3-term point multiplication:

$$
d G+c(u G)-c r_{A} W_{D}=k_{1} P_{1}+k_{2} P_{2}+k_{3} P_{3}
$$

Point multiplication

$$
Q=k_{1} P_{1}+k_{2} P_{2}+k_{3} P_{3}
$$

- Shamir's trick \Rightarrow 3-term double-and-add algorithm
- 3-term τ-adic joint sparse form ${ }^{3}$

Simplified algorithm

(1) Precompute all possible combinations

$$
R_{k_{1}, k_{2}, k_{3}}=k_{1, j} P_{1}+k_{2, j} P_{2}+k_{3, j} P_{3}
$$

(2) Perform $\phi(P)$ for all bits
(3) If $k_{1, j}, k_{2, j}, k_{3, j} \neq 000$, add $R_{k_{1}, k_{2}, k_{3}}$ to Q using mixed coordinate point addition ${ }^{a}$

[^3]${ }^{3}$ Brumley, ICICS 2006, LNCS 4307

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs $\left(R_{k}, R_{k+1}\right)$ are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs $\left(R_{k}, R_{k+1}\right)$ are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{1} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs $\left(R_{k}, R_{k+1}\right)$ are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs $\left(R_{k}, R_{k+1}\right)$ are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs (R_{k}, R_{k+1}) are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$

Precomputed points

| $k_{3} k_{2} k_{1}$ Point |
| :---: | :---: | :---: | :---: |
| $000 R_{0}=\mathcal{O}$ | $10 \overline{1} R_{7}=R_{3}-R_{1}$ | n/a | $\overline{101}-R_{7}$ |
| $001 R_{1}=P_{1}$ | $110 R_{8}=R_{3}+R_{2}$ | $001-R_{1}$ | $\overline{110}-R_{8}$ |
| $010 R_{2}=P_{2}$ | $1 \overline{10} 0 R_{9}=R_{3}-R_{2}$ | $0 \overline{10}-R_{2}$ | $\overline{1} 10-R_{9}$ |
| $100 R_{3}=P_{3}$ | $111 R_{10}=R_{8}+R_{1}$ | $100-R_{3}$ | 111 - R_{10} |
| $011 R_{4}=R_{2}+R_{1}$ | $11 \overline{1} R_{11}=R_{8}-R_{1}$ | $0 \overline{1}-R_{4}$ | 111 $-R_{11}$ |
| $01 \overline{1} R_{5}=R_{2}-R_{1}$ | ${ }_{11}^{11} R_{12}=R_{9}+R_{1}$ | $011-R_{5}$ | $\overline{111}-R_{12}$ |
| $101 R_{6}=R_{3}+R_{1}$ | $1 \overline{1} 1 R_{13}=R_{9}-R_{1}$ | $\overline{101}-R_{6}$ | $\overline{111}-R_{13}$ |

- Precomputations require 10 point additions(/subtractions)
- Pairs (R_{k}, R_{k+1}) are computed so that
(1) $R_{k}=R_{i}+R_{j}$, and
(2) $R_{k+1}=R_{i}-R_{j}$
- Unified point addition and subtraction:
$\left(R_{k}, R_{k+1}\right) \leftarrow R_{i} \pm R_{j}$

Unified point addition and subtraction

Point addition

$$
\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)
$$

$$
\begin{aligned}
\lambda & =\frac{y_{1}+y_{2}}{x_{1}+x_{2}} \\
x_{3} & =\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
y_{3} & =\lambda\left(x_{1}+x_{3}\right)+x_{3}+y_{1}
\end{aligned}
$$

Point subtraction

$$
\left(x_{4}, y_{4}\right)=\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)
$$

$$
\begin{aligned}
\lambda & =\frac{y_{1}+y_{2}+x_{2}}{x_{1}+x_{2}} \\
x_{4} & =\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
y_{4} & =\lambda\left(x_{1}+x_{4}\right)+x_{4}+y_{1}
\end{aligned}
$$

Unified point addition and subtraction

Point addition

$$
\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)
$$

$\lambda=\frac{y_{1}+y_{2}}{x_{1}+x_{2}}$
$x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a$
$y_{3}=\lambda\left(x_{1}+x_{3}\right)+x_{3}+y_{1}$

- Inversion is the same ${ }^{4}$

Point subtraction

$$
\begin{aligned}
& \left(x_{4}, y_{4}\right)=\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \\
& \lambda=\frac{y_{1}+y_{2}+x_{2}}{x_{1}+x_{2}} \\
& x_{4}=\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
& y_{4}=\lambda\left(x_{1}+x_{4}\right)+x_{4}+y_{1}
\end{aligned}
$$

$$
\square
$$

Unified point addition and subtraction

Point addition

$$
\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)
$$

$\lambda=\frac{y_{1}+y_{2}}{x_{1}+x_{2}}$
$x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a$
$y_{3}=\lambda\left(x_{1}+x_{3}\right)+x_{3}+y_{1}$

Point subtraction

$$
\begin{aligned}
& \left(x_{4}, y_{4}\right)=\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \\
& \lambda=\frac{y_{1}+y_{2}+x_{2}}{x_{1}+x_{2}} \\
& x_{4}=\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
& y_{4}=\lambda\left(x_{1}+x_{4}\right)+x_{4}+y_{1}
\end{aligned}
$$

- Inversion is the same ${ }^{4}$
- Some additions can be saved by rearranging operations

[^4]
Unified point addition and subtraction

Point addition

$$
\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)
$$

$$
\lambda=\frac{y_{1}+y_{2}}{x_{1}+x_{2}}
$$

$$
x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a
$$

$$
y_{3}=\lambda\left(x_{1}+x_{3}\right)+x_{3}+y_{1}
$$

Point subtraction

$$
\left(x_{4}, y_{4}\right)=\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)
$$

$$
\begin{aligned}
\lambda & =\frac{y_{1}+y_{2}+x_{2}}{x_{1}+x_{2}} \\
x_{4} & =\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
y_{4} & =\lambda\left(x_{1}+x_{4}\right)+x_{4}+y_{1}
\end{aligned}
$$

- Inversion is the same ${ }^{4}$
- Some additions can be saved by rearranging operations
- Total cost reduces from $2 \mathrm{I}+4 \mathrm{M}+2 \mathrm{~S}+17 \mathrm{~A}$ to

$$
I+4 M+2 S+14 A
$$

${ }^{4}$ Mentioned by Okeya et al. in ACISP 2005, LNCS 3574

Montgomery's trick

Method	Cost	$\mathrm{I}=9 \mathrm{M}$
Naïve	$10(\mathrm{I}+2 \mathrm{M}+\mathrm{S}+8 \mathrm{~A})+5 \mathrm{~A}$	110 M
Unified	$5(1+4 M+2 S+14 \mathrm{~A})$	65 M

Montgomery's trick

Method	Cost	$\mathrm{I}=9 \mathrm{M}$
Naïve	$10(I+2 M+S+8 A)+5 A$	110 M
Unified	$5(I+4 M+2 S+14 A)$	65 M
Unified + Montgomery	$I+17 M+2 S+9 A+5(4 M+2 S+14 A)$	$46 M$

- Trades inversions to multiplications
- $1 / x_{1}$ and $1 / x_{2}$ computed so that $1 / x_{1}=x_{2} /\left(x_{1} x_{2}\right)$ and $1 / x_{2}=x_{1} /\left(x_{1} x_{2}\right)$
- n inversions computed with $3(n-1)$ multiplications and 1 inversion

Architecture

Massey-Omura multiplier

FAP

Multiplier
Adder
Squarer

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles

Area \rightarrow

Time
Ops

Architecture

Massey-Omura multiplier

FAP

Multiplier
Adder
Squarer

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$

Architecture

Massey-Omura multiplier

FAP

Multiplier
Adder
Squarer

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$

Architecture

Massey-Omura multiplier

FAP

Adder
Squarer

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, ν F-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : \{1$15,17,19,21,24,28,33,41,55$, $82,163\}$

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, ν F-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : \{1$15,17,19,21,24,28,33,41,55$, $82,163\}$

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : $\{1-$ $15,17,19,21,24,28,33,41,55$, 82, 163\}

Area
Time \Rightarrow
Ops

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : $\{1-$ $15,17,19,21,24,28,33,41,55$, 82, 163\}

Area
Time \Rightarrow
Ops

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : $\{1-$ $15,17,19,21,24,28,33,41,55$, 82, 163\}

Area
Time

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, νF-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : $\{1-$ $15,17,19,21,24,28,33,41,55$, 82, 163\}

Area
Time \Rightarrow
Ops

Architecture

Massey-Omura multiplier

- Bit-serial, only one F-block
- Latency: $m+c+1$ clock cycles
- Digit-serial, ν F-blocks
- Latency: $\left\lceil\frac{m}{\nu}\right\rceil+c+1$
- ν should be from the set \mathcal{F} : \{1$15,17,19,21,24,28,33,41,55$, 82, 163\}

Area
Time
Ops

Results and Discussion

Parameters

Parameters

Parameters

Parameters

Results on an Altera Stratix II S180C3

- VHDL

- Altera Quartus II 6.0 SP1

Results on an Altera Stratix II S180C3

- VHDL
- Altera Quartus II 6.0 SP1

Results from Quartus II

- 67,467 ALMs (94 \%)
- 240 M512 (26 \%), 305 M4K (40 \%)
- Two clocks: 164 MHz and 82 MHz

Results on an Altera Stratix II S180C3

- VHDL
- Altera Quartus II 6.0 SP1

Results from Quartus II

- 67,467 ALMs (94 \%)
- 240 M512 (26 \%), 305 M4K (40 \%)
- Two clocks: 164 MHz and 82 MHz

Performance

- One verification $114.2 \mu \mathrm{~s}$ (average)
- Up to 166,000 ops!

Conclusions and future work

- Very high ops achievable with modern FPGAs
- Development in FPGAs: speed and area
- Parallelization
- Time of single operation vs. ops

Conclusions and future work

- Very high ops achievable with modern FPGAs
- Development in FPGAs: speed and area
- Parallelization
- Time of single operation vs. ops
- Future work:
- Polynomial basis?
- Counterpart implementations for signature generation
- Other operations (hash, modular arithmetic)
- Possible problems (side channel attacks, power, etc.)

Thank you. Questions?

[^0]: ${ }^{1}$ See http://www.tcs.hut.fi/Software/PLA/new/index.shtml

[^1]: ${ }^{1}$ See http://www.tcs.hut.fi/Software/PLA/new/index.shtml

[^2]: ${ }^{2}$ Solinas, Des. Codes Cryptogr. 19(2-3), 2000

[^3]: ${ }^{\text {a }}$ AI-Daoud et al. IEEE Tran. Comp. 51(8), 2002

[^4]: ${ }^{4}$ Mentioned by Okeya et al. in ACISP 2005, LNCS 3574

