How to use Koblitz curves on small devices?

Kimmo Järvinen ${ }^{1,2}$ Ingrid Verbauwhede ${ }^{1}$
${ }^{1}$ KU Leuven (Belgium)
${ }^{2}$ Aalto University (Finland)
CARDIS 2014, Paris, France, Nov. 5-7, 2014

- Elliptic curves are good for lightweight public-key crypto
- Koblitz curves allow very fast $k P$
\Rightarrow Point doublings are replaced by cheap Frobenius maps
\Rightarrow The scalar k is needed as a τ-adic expansion K
\Rightarrow Conversions are needed and they are expensive
- Elliptic curves are good for lightweight public-key crypto
- Koblitz curves allow very fast $k P$
\Rightarrow Point doublings are replaced by cheap Frobenius maps
\Rightarrow The scalar k is needed as a τ-adic expansion K
\Rightarrow Conversions are needed and they are expensive
- We provide a solution to this problem:

Conversions can be delegated to a more powerful party if the weaker party computes all operations in the τ-adic domain

CARDIS 2014, Paris, France, Nov. 5-7, 2014

- Elliptic curves over $G F\left(2^{m}\right)$ of the form:

$$
E: x^{2}+x y=y^{3}+a x^{2}+1, \text { where } a \in\{0,1\}
$$

- If $\mathbf{P}=(x, y) \in E$, then also $F(\mathbf{P})=\left(x^{2}, y^{2}\right) \in E$
- $2 \mathbf{P}=\mu F(\mathbf{P})-F(F(\mathbf{P}))$ where $\mu=(-1)^{1-a}$
- Elliptic curves over $G F\left(2^{m}\right)$ of the form:

$$
E: x^{2}+x y=y^{3}+a x^{2}+1, \text { where } a \in\{0,1\}
$$

- If $\mathbf{P}=(x, y) \in E$, then also $F(\mathbf{P})=\left(x^{2}, y^{2}\right) \in E$
- $2 \mathbf{P}=\mu F(\mathbf{P})-F(F(\mathbf{P}))$ where $\mu=(-1)^{1-a}$
- Frobenius can be seen as a multiplication by the complex number:
$\tau=(\mu+\sqrt{-7}) / 2$
- If k is given in base- τ as $K=\sum K_{i} \tau^{i}$, then Frobenius maps can be used for computing $k \mathbf{P}$
\Rightarrow Fast Frobenius-and-add instead of slow double-and-add

CARDIS 2014, Paris, France, Nov. 5-7, 2014

- Signature (r, s) for a message m :

$$
\begin{aligned}
& k \in_{R}[1, q-1] \\
& r=[k \mathbf{P}]_{x} \\
& e=H(m) \\
& s=k^{-1}(e+d r) \bmod q
\end{aligned}
$$

Existing Options for EC Cryptosystems

Option A: Convert a random integer to the τ-adic domain

CARDIS 2014, Paris, France, Nov. 5-7, 2014

Existing Options for EC Cryptosystems

Option A: Convert a random integer to the τ-adic domain

Option B: Convert a random τ-adic expansion to an integer

CARDIS 2014, Paris, France, Nov. 5-7, 2014

The New Idea: Delegate Conversions to the Server

- The tag computes everything in the τ-adic domain (values that don't depend on k can be computed normally)
- Resources are saved if operations in the τ-adic domain are cheap (cheaper than conversions)
- We need an efficient algorithm for addition of two τ-adic expansions; other arithmetic operations can be implemented using it

$$
a=19=\langle 1,0,0,1,1\rangle \text { and } b=17=\langle 1,0,0,0,1\rangle
$$

Then, $c=36=\langle 1,0,0,1,0,0\rangle$ is given as follows:

- With any base $B \in \mathbb{Z}_{+}$, we can do:

$$
\begin{aligned}
& r_{i}=a_{i}+b_{i}+t_{i-1} \\
& c_{i}=r_{i} \bmod B \\
& t_{i}=\left(r_{i}-c_{i}\right) / B
\end{aligned}
$$

- The carry is a τ-adic number $t \in \mathbb{Z}[\tau]$ and it is uniquely given by $t=t_{0}+t_{1} \tau$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)
- The carry is a τ-adic number $t \in \mathbb{Z}[\tau]$ and it is uniquely given by $t=t_{0}+t_{1} \tau$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)
- r_{i} and C_{i} are given similarly (only t_{0} affects C_{i})

$$
\begin{aligned}
r_{i} & =A_{i}+B_{i}+t_{0} \\
C_{i} & =r_{i} \bmod 2
\end{aligned}
$$

- The carry is a τ-adic number $t \in \mathbb{Z}[\tau]$ and it is uniquely given by $t=t_{0}+t_{1} \tau$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)
- r_{i} and C_{i} are given similarly (only t_{0} affects C_{i})
- Division $\left(t-C_{i}\right) / \tau$ is given by $\left(t_{0}, t_{1}\right) \leftarrow\left(t_{1}+\mu\left(t_{0}-C_{i}\right) / 2,-\left(t_{0}-C_{i}\right) / 2\right)$ (Solinas, 2000)

$$
\begin{aligned}
r_{i} & =A_{i}+B_{i}+t_{0} \\
C_{i} & =r_{i} \bmod 2 \\
t_{0} & =t_{1}+\mu\left(t_{0}-C_{i}\right) / 2 \\
t_{1} & =-\left(t_{0}-C_{i}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle
\end{aligned}
$$

$$
\begin{aligned}
r_{i} & =t_{0}+A_{i}+B_{i} \\
C_{i} & =r_{i} \bmod 2 \\
t_{0} & =t_{1}+\mu\left(t_{0}-C_{i}\right) / 2 \\
t_{1} & =-\left(t_{0}-C_{i}\right) / 2
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& =
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle
\end{aligned}
$$

$$
\begin{array}{rrrrr}
& & -1 & 0 & \\
& & -1 & 1 & \\
\hline & 1 & 0 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
r_{i} & =1+0+1=2 \\
C_{i} & =2 \bmod 2=0 \\
t_{0} & =-1+1 \cdot(2-0) / 2=0 \\
t_{1} & =-1 \cdot(2-0) / 2=-1
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle \\
& \left.\begin{array}{rrrrr}
& 0 & -1 & & \\
& & -1 & 0 & \\
\\
\hline & 1 & 0 & 0 & 0
\end{array}\right) \\
& r_{i}=0+0+0=2 \\
& C_{i}=0 \bmod 2=0 \\
& t_{0}=-1+1 \cdot(0-0) / 2=-1 \\
& t_{1}=-1 \cdot(0-0) / 2=0
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle
\end{aligned}
$$

$$
\begin{array}{rrrrrr}
& 1 & -1 & & & \\
\\
& 0 & -1 & & & \\
\hline & 1 & 0 & 0 & 0 & 1 \\
+ & & 1 & 0 & 0 & 1
\end{array} 1
$$

$$
\begin{aligned}
r_{i} & =-1+0+0=-1 \\
C_{i} & =-1 \bmod 2=1 \\
t_{0} & =0+1 \cdot(-1-1) / 2=-1 \\
t_{1} & =-1 \cdot(-1-1) / 2=1
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle
\end{aligned}
$$

$$
\left.\begin{array}{rrrrrrr}
0 & 1 & & & & & \\
& 1 & -1 & & & & \\
& & 1 & 0 & 0 & 0 & 1 \\
& & & 1 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
r_{i} & =-1+1+1=1 \\
C_{i} & =1 \bmod 2=1 \\
t_{0} & =1+1 \cdot(1-1) / 2=1 \\
t_{1} & =-1 \cdot(1-1) / 2=0
\end{aligned}
$$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

$$
\begin{aligned}
& A=1+\tau+\tau^{4}=\langle 1,0,0,1,1\rangle \\
& B=1+\tau^{4}=\langle 1,0,0,0,1\rangle \\
& \\
& \quad 0 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

Hence, $C=A+B=\langle 1,1,1,0,0,0\rangle=\tau^{3}+\tau^{4}+\tau^{5}$

CARDIS 2014, Paris, France, Nov. 5-7, 2014

- $A_{i} \in\{0,1\}$ and $B_{i} \in\{0, \pm 1\}$ to support τ NAF
- FSM includes 21 states

$$
\mu=1
$$

- $A_{i} \in\{0,1\}$ and $B_{i} \in\{0, \pm 1\}$ to support τ NAF
- FSM includes 21 states
- The state $\left(t_{0}, t_{1}\right)$ with $t_{0} \in[-3,3]$ and $t_{1} \in[-2,2]$
- At most 7 steps to reach $(0,0)$ when all $A_{i}=B_{i}=0$

$$
\mu=1
$$

Input: τ-adic expansions $A=\sum_{i=0}^{n-1} A_{i} \tau^{i}$ and $B=\sum_{i=0}^{n-1} B_{i} \tau^{i}$ Output: τ-adic expansion $C=A+B$ with $C_{i} \in\{0,1\}$
$\left(t_{0}, t_{1}\right) \leftarrow(0,0)$
for $i=0$ to $n+6$ do
$r \leftarrow A_{i}+B_{i}+t_{0}$
$C_{i} \leftarrow r_{0}$
$\left(t_{0}, t_{1}\right) \leftarrow\left(t_{1}+\mu\lfloor r / 2\rfloor,-\lfloor r / 2\rfloor\right)$

Other Arithmetic Operations

Multiplication

- shift-and-add (both operands τ-adic expansion)
- double-and-add (an integer and a τ-adic expansion)

Other Arithmetic Operations

Multiplication

- shift-and-add (both operands τ-adic expansion)
- double-and-add (an integer and a τ-adic expansion)

Inversion mod q

- Fermat's Little Theorem $A^{-1}=A^{q-2}$

Other Arithmetic Operations

Multiplication

- shift-and-add (both operands τ-adic expansion)
- double-and-add (an integer and a τ-adic expansion)

Inversion mod q

- Fermat's Little Theorem $A^{-1}=A^{q-2}$

Folding

- Integer equivalent of $A=\sum_{i=0}^{n-1} A_{i} \tau^{i}$ given by $a=\sum A_{i} s^{i} \bmod q$ where s is a curve constant such that $s^{m} \equiv 1(\bmod q)($ Lange, 2005)
- Split A into m-bit blocks $A^{(0)}, \ldots, A^{(\lfloor n / m\rfloor)}$ and compute $A^{(0)}+A^{(1)}+\ldots+A^{(\lfloor n / m\rfloor)}$ with the addition algorithm
- Length of A can be reduced to approx. m

CARDIS 2014, Paris, France, Nov. 5-7, 2014

- 130 nm CMOS, Synopsys Design Compiler, VHDL
- 75.25 GE $(\mu=1)$ or 76.25 GE $(\mu=-1)$

Work	Technology	GE
(Brumley, 2010), integer-to- τ NAF	FPGA, Stratix II S60C4	>7200
(Brumley, 2010), τ-adic-to-integer	FPGA, Stratix II S60C4	>3600
This work, $\mu=1$	ASIC, 0.13 μ m CMOS	75.25
This work, $\mu=1$	ASIC, $0.13 \mu \mathrm{~m}$ CMOS	~ 2000

CARDIS 2014, Paris, France, Nov. 5-7, 2014

Conclusions

- Expensive conversions can be delegated to a more powerful party by using cheap τ-adic arithmetic
- Koblitz curves are viable also for lightweight implementations

Future Work

- Side-channel countermeasures
- Bit-serial \rightarrow digit-serial
- Entire elliptic curve cryptosystem (e.g., ECDSA signing)

Thank you! Questions?

CARDIS 2014, Paris, France, Nov. 5-7, 2014

