

Another Look at Inversions over Binary Fields

Vassil Dimitrov¹ Kimmo Järvinen²

¹Dept. of Electrical and Computer Engineering, University of Calgary, Canada ²Dept. of Information and Computer Science, Aalto University, Finland

The 21st IEEE International Symposium on Computer Arithmetic, ARITH21 Austin, TX, USA, April 7–10, 2013

Introduction

Inversions in binary fields

- Applications, especially, in public-key cryptography (e.g., elliptic curve cryptography)
- Can be computed essentially in two different ways: Extended Euclidean Algorithm or Fermat's Little Theorem

We will introduce new algorithms for computing inversions that

- are more economical than the popular Itoh-Tsujii algorithm,
- achieve the lowest possible number of multiplications for four out of five NIST fields, and
- have nice implementation properties, especially, on HW

Inversion with Fermat's Little Theorem

Multiplicative inverse

Given $A \neq 0 \in GF(2^m)$, find A^{-1} such that $A^{-1} \cdot A = 1$

►
$$A^{2^m-1} = 1$$
 for all $A \neq 0 \in GF(2^m)$

$$\Rightarrow A^{-1} = A^{2^m-2}$$

$$A^{2(2^{m-1}-1)} = A^{2(1+2+2^2+...+2^{m-2})}$$

Inversion with Fermat's Little Theorem

Multiplicative inverse

Given $A \neq 0 \in GF(2^m)$, find A^{-1} such that $A^{-1} \cdot A = 1$

•
$$A^{2^m-1} = 1$$
 for all $A \neq 0 \in GF(2^m)$

$$\Rightarrow A^{-1} = A^{2^m-2}$$

$$A^{2(2^{m-1}-1)} = A^{2(1+2+2^2+...+2^{m-2})}$$

Standard exponentiation

$$A^{2(1+2+2^2+...+2^{m-2})} = B \cdot B^2 \cdot B^{2^2} \cdot ... \cdot B^{2^{m-2}}$$
 where $B = A^2$

- ightharpoonup m-2 multiplications
- ▶ m − 1 squarings

Itoh-Tsujii

Introduced by Itoh and Tsujii in 1988

$$1+2+\ldots+2^{m-2} = \begin{cases} (1+2)(1+2^2+\ldots+2^{m-3}), & \text{if } m-1 \text{ even} \\ 1+2(1+2)(1+2^2+\ldots+2^{m-4}), & \text{if } m-1 \text{ odd} \end{cases}$$

Example

$$GF(2^{31})$$
: $1 + 2 + ... + 2^{29} = (1 + 2)(1 + 2^2(1 + 2^2)(1 + 2^4(1 + 2^4)(1 + 2^8(1 + 2^8))))$
 \Rightarrow 7 multiplications, 30 squarings

In general

- ▶ $\lfloor \log(m-1) \rfloor + H(m-1) 1$ multiplications
- ▶ m − 1 squarings

The New Algorithm

Idea

Use the same approach as IT but try to minimize the number of additions by using multiple bases

Algorithm

Double-base with bases $\{2,3\}$:

$$1 + 2 + \ldots + 2^{m-2} =$$

$$\begin{cases} (1 + 2 + 2^2) \cdot (1 + 2^3 + 2^6 + \ldots + 2^{m-4}) & \text{if } m - 1 = 0, 3 \pmod{6} \\ (1 + 2) \cdot (1 + 2^2 + 2^4 + \ldots + 2^{m-3}) & \text{if } m - 1 = 2, 4 \pmod{6} \\ 1 + 2 \cdot (1 + 2) \cdot (1 + 2^2 + 2^4 + \ldots + 2^{m-4}) & \text{if } m - 1 = 1, 5 \pmod{6} \end{cases}$$

For triple-base version with bases $\{2,3,5\}$, we extend this with: $((1+2)(1+2^2)+2^4)(1+2^5+...+2^{m-6})$ if $m-1=0 \pmod 5$

$$1 + 2 + 2^2 + \ldots + 2^{28} + 2^{29}$$

$$1 + 2 + 2^2 + \ldots + 2^{28} + 2^{29}$$

$$30 \text{ mod } 6 = 0 \quad \Rightarrow (1 + 2 + 2^2) \cdot (1 + 2^3 + 2^{3 \cdot 2} + \ldots + 2^{3 \cdot 9})$$

$$1 + 2 + 2^2 + \ldots + 2^{28} + 2^{29} = (1 + 2 + 2^2)$$

$$30 \text{ mod } 6 = 0 \quad \Rightarrow (1 + 2 + 2^2) \cdot (1 + 2^3 + 2^{3 \cdot 2} + \ldots + 2^{3 \cdot 9})$$

$$1 + 2 + 2^2 + \ldots + 2^{28} + 2^{29} = (1 + 2 + 2^2)$$

30 mod
$$6 = 0 \Rightarrow (1 + 2 + 2^2) \cdot (1 + 2^3 + 2^{3 \cdot 2} + \dots + 2^{3 \cdot 9})$$

10 mod $6 = 4 \Rightarrow (1 + 2^3) \cdot (1 + 2^6 + 2^{6 \cdot 2} + 2^{6 \cdot 3} + 2^{6 \cdot 4})$

$$1 + 2 + 2^{2} + \ldots + 2^{28} + 2^{29} =$$
$$(1 + 2 + 2^{2}) \cdot (1 + 2^{3})$$

30 mod 6 = 0
$$\Rightarrow$$
 (1 + 2 + 2²) · (1 + 2³ + 2^{3·2} + ... + 2^{3·9})
10 mod 6 = 4 \Rightarrow (1 + 2³) · (1 + 2⁶ + 2^{6·2} + 2^{6·3} + 2^{6·4})

$$\begin{aligned} 1+2+2^2+\ldots+2^{28}+2^{29} &=\\ &(1+2+2^2)\cdot(1+2^3)\\ 30 \text{ mod } 6 &=0 &\Rightarrow (1+2+2^2)\cdot(1+2^3+2^{3\cdot2}+\ldots+2^{3\cdot9})\\ 10 \text{ mod } 6 &=4 &\Rightarrow (1+2^3)\cdot(1+2^6+2^{6\cdot2}+2^{6\cdot3}+2^{6\cdot4})\\ 5 \text{ mod } 6 &=5 &\Rightarrow 1+2^6\cdot(1+2^6)\cdot(1+2^{6\cdot2}) \end{aligned}$$

$$\begin{array}{l} 1+2+2^2+\ldots+2^{28}+2^{29}=\\ (1+2+2^2)\cdot(1+2^3)\cdot(1+2^6\cdot(1+2^6)\cdot(1+2^{12}))\\ 30\text{ mod }6=0 &\Rightarrow (1+2+2^2)\cdot(1+2^3+2^{3\cdot2}+\ldots+2^{3\cdot9})\\ 10\text{ mod }6=4 &\Rightarrow (1+2^3)\cdot(1+2^6+2^{6\cdot2}+2^{6\cdot3}+2^{6\cdot4})\\ 5\text{ mod }6=5 &\Rightarrow 1+2^6\cdot(1+2^6)\cdot(1+2^{6\cdot2}) \end{array}$$

$$\begin{array}{c} 1+2+2^2+\ldots+2^{28}+2^{29}=\\ &(1+2+2^2)\cdot(1+2^3)\cdot(1+2^6\cdot(1+2^6)\cdot(1+2^{12}))\\ 30\ \text{mod}\ 6=0 &\Rightarrow (1+2+2^2)\cdot(1+2^3+2^{3\cdot2}+\ldots+2^{3\cdot9})\\ 10\ \text{mod}\ 6=4 &\Rightarrow (1+2^3)\cdot(1+2^6+2^{6\cdot2}+2^{6\cdot3}+2^{6\cdot4})\\ 5\ \text{mod}\ 6=5 &\Rightarrow 1+2^6\cdot(1+2^6)\cdot(1+2^{6\cdot2}) \end{array}$$

- 6 multiplications and 30 squarings
- IT required 7 multiplications and 30 squarings

The New Algorithm vs. Itoh-Tsujii

Average number of multiplications:

- ▶ $1.5 \log(m-1)$ for IT
- ▶ $1.42 \log(m-1)$ for $\{2,3\}$
- ▶ $1.39 \log(m-1)$ for $\{2,3,5\}$

For fields $GF(2^m)$, $1 \le m \le 1023$:

- ▶ 18 (1.8%): {2,3} is the best
- ▶ 109 (10.7%): {2,3,5} is the best
- ▶ 387 (37.8%): {2,3} and {2,3,5} are the best
- ▶ 79 (7.7%): IT ({2}) is the best
- 430 (42.0%): All are equally good
- \Rightarrow We are better for 50.2% and worse for 7.7% of the cases

The NIST Fields

Itoh-Tsujii:

<i>GF</i> (2 ¹⁶³)	<i>GF</i> (2 ²³³)	GF(2 ²⁸³)	GF(2 ⁴⁰⁹)	<i>GF</i> (2 ⁵⁷¹)
9	10	11	11	13

The best from both $\{2,3\}$ and $\{2,3,5\}$:

<i>GF</i> (2 ¹⁶³)	GF(2 ²³³)	GF(2 ²⁸³)	GF(2 ⁴⁰⁹)	<i>GF</i> (2 ⁵⁷¹)
9	10	12	10	12

Addition Chains

- Inversion algorithms can be derived from addition chains
- Using an optimal addition chain (OAC) leads to the smallest number of multiplications
- Different chains can have different costs even if the length (number of multiplications) is the same
- Which is the best?

Example

162: 99 OACs (length 10) 232: 894 OACs (length 11) 282: 5600 OACs (length 12) 408: 40 OACs (length 11) 570: 4387 OACs (length 13)

Practical Implications

Fewer (even by one) multiplications make a large difference and, therefore, practically all work so far has concentrated on minimizing multiplications.

Although multiplications usually dominate the costs of inversions, other aspects should not be overlooked

- Temporary variables
- Squarings

Temporary Variables

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

 $1+2+...+2^{29} = (1+2+2^2)(1+2^3)(1+2^6(1+2^6)(1+2^{12}))$

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

 $1+2+...+2^{29} = (1+2+2^2)(1+2^3)(1+2^6)(1+2^6)(1+2^{12})$

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

$$1 + 2 + ... + 2^{29} = (1 + 2 + 2^2)(1 + 2^3)(1 + 2^6)(1 + 2^6)(1 + 2^{12})$$

- 1. $T_1 \leftarrow A^2$
- 2. $T_2 \leftarrow T_1^2$
- $3. \quad T_1 \leftarrow T_1 \times T_2$
- 4. $T_2 \leftarrow T_2^2$
- 5. $T_1 \leftarrow T_1 \times T_2$

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

$$1 + 2 + ... + 2^{29} = (1 + 2 + 2^2)(1 + 2^3)(1 + 2^6(1 + 2^6)(1 + 2^{12}))$$

- 1. $T_1 \leftarrow A^2$
- 2. $T_2 \leftarrow T_1^2$
- 3. $T_1 \leftarrow T_1 \times T_2$
- 4. $T_2 \leftarrow T_2^2$
- 5. $T_1 \leftarrow T_1 \times T_2$
- 6. $T_2 \leftarrow T_1^{2^3}$
- 7. $T_1 \leftarrow T_1 \times T_2$

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

$$1 + 2 + ... + 2^{29} = (1 + 2 + 2^2)(1 + 2^3)(1 + 2^6)(1 + 2^6)(1 + 2^{12})$$

1.
$$T_1 \leftarrow A^2$$

8.
$$T_3 \leftarrow T_1$$

2.
$$T_2 \leftarrow T_1^2$$

9.
$$T_1 \leftarrow T_1^{2^6}$$

3.
$$T_1 \leftarrow T_1 \times T_2$$
 10. $T_2 \leftarrow T_1^{2^6}$

10.
$$T_2 \leftarrow T_1^{2^6}$$

$$4. \quad T_2 \leftarrow T_2^2$$

11.
$$T_1 \leftarrow T_1 \times T_2$$

5.
$$T_1 \leftarrow T_1 \times T_2$$
 12. $T_2 \leftarrow T_1^{2^{12}}$

12.
$$T_2 \leftarrow T_1^{2-1}$$

6.
$$T_2 \leftarrow T_1^{2^3}$$

13.
$$T_1 \leftarrow T_1 \times T_2$$

7.
$$T_1 \leftarrow T_1 \times T_2$$

7.
$$T_1 \leftarrow T_1 \times T_2$$
 14. $T_1 \leftarrow T_3 \times T_1$

$$GF(2^{31}): A^{-1} = A^{2^{31}-2} = A^{2(2^{30}-1)} = A^{2(1+2+...+2^{29})}$$

1 + 2 + ... + $2^{29} = (1+2+2^2)(1+2^3)(1+2^6)(1+2^6)(1+2^{12})$

1.
$$T_1 \leftarrow A^2$$

2.
$$T_2 \leftarrow T_1^2$$

3.
$$T_1 \leftarrow T_1 \times T_2$$
 10. $T_2 \leftarrow T_1^{2^6}$

4.
$$T_2 \leftarrow T_2^2$$

5.
$$T_1 \leftarrow T_1 \times T_2$$
 12. $T_2 \leftarrow T_1^{2^{12}}$

6.
$$T_2 \leftarrow T_1^{2^3}$$

7.
$$T_1 \leftarrow T_1 \times T_2$$

8.
$$T_3 \leftarrow T_1$$

9.
$$T_1 \leftarrow T_1^{2^6}$$

10.
$$T_2 \leftarrow T_1^{20}$$

11.
$$T_1 \leftarrow T_1 \times T_2$$

12.
$$T_2 \leftarrow T_1^{2}$$

13.
$$T_1 \leftarrow T_1 \times T_2$$

14.
$$T_1 \leftarrow T_3 \times T_1$$

15. **Return**
$$T_1 = A^{-1}$$

Number of Variables

$$\begin{array}{ll} (1+2^k) & \text{One short-time variable } (T_2) \\ (1+2^k+2^{2k}) & \text{One short-time variable } (T_2) \\ ((1+2^k)(1+2^{2k})+2^{4k}) & \text{Two short-time variable } (T_2,T_3) \\ 1+2^k(1+2^k) & \text{One short-time variable } (T_2) \text{ and one long-time variable } (T_3 \text{ or } T_4) \end{array}$$

- A short-time variable can be reused by the next term
- A long-time variable must hold its value to the end
- ► Multiple long-time variables can be accumulated into a single variable ⇒ at most one long-time variable is needed

Results

- ▶ IT requires 3 variables unless $m-1=2^n$; then it requires 2
- ▶ DB requires only 2 variables iff $m-1=2^{n_1}3^{n_2}$
- ▶ TB requires either 3 or 4 unless it reduces to DB
- ▶ Notably, $162 = 2 \cdot 3^4$ and DB needs only 2 variables
- → The DB algorithm achieves the lowest possible memory footprint for inversion in GF(2¹⁶³) used, for example, in operations on popular NIST B/K-163 elliptic curves

Squarings

Motivation

Example

An inversion over $GF(2^{163})$ requires:

- 9 multiplications and
- ▶ 162 squarings.

Modern HW implementations of ECC use fast multipliers and squarings start to dominate:

- ► $M = 163 \Rightarrow$ Squarings take 10% of the time (162 vs. 1467)
- ► M = 15 \Rightarrow Squarings take 55% of the time (162 vs. 135)
- ► M = 4 \Rightarrow Squarings take 82% of the time (162 vs. 36)
- ► M = 1 \Rightarrow Squarings take 95% of the time (162 vs. 9)

OK but the number of squarings is m - 1 = 162 for both IT and the new algorithm.

Squarings

Normal Basis

An element $A \in GF(2^m)$ is given by $A = \sum_{i=0}^{m-1} a_i \beta^{2^i}$. Then, $A^{2^s} = A \ll s$ (cyclic shift).

Polynomial Basis

An element $A \in GF(2^m)$ is given by $A = \sum_{i=0}^{m-1} a_i x^i$. Then, $A^2 = \sum_{i=0}^{m-1} a_i x^{2i} \mod p(x)$ and

$$A^{2^{s}} = \begin{bmatrix} 1 & q_{0,1}^{(s)} & \dots & q_{0,m-1}^{(s)} \\ 0 & q_{1,1}^{(s)} & \dots & q_{1,m-1}^{(s)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & q_{m-1,1}^{(s)} & \dots & q_{m-1,m-1}^{(s)} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{m-1} \end{bmatrix}$$

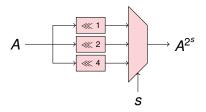
Repeated Squarer (Normal Basis / HW)

A repeated squarer is a component that can compute A^{2^s} for all $s \in \mathcal{S}$ with the same latency (one clock cycle)

▶ Repeated squarers are simply *m*-bit *C*-to-1 multiplexers where *C* is the cardinality of *S*

Example

A repeated squarer with $S = \{1, 2, 4\}$ is a 3-to-1 multiplexer:



Example: The NIST Field $GF(2^{163})$

Itoh-Tsujii

$$\begin{array}{l} 1+2+\ldots+2^{161} = \\ (1+2)(1+2^2(1+2^2)(1+2^4)(1+2^8)(1+2^{16}$$

$$\Rightarrow \mathcal{E} = (1, 1, 2, 4, 8, 16, 32, 64, 32, 2)$$

DB/TB algorithms

$$1 + 2 + \ldots + 2^{161} = (1 + 2 + 2^2)(1 + 2^3 + 2^6)(1 + 2^9 + 2^{18})(1 + 2^{27} + 2^{54})(1 + 2^{81})$$

$$\Rightarrow \mathcal{E} = (1, 1, 1, 3, 3, 9, 9, 27, 27, 81)$$

Example: The NIST Field $GF(2^{163})$ (cont.)

With different C, S_{opt} and L are as follows:

	IT	DB/TB
\mathcal{E}	(1, 1, 2, 4, 8, 16, 32, 64, 32, 2)	(1, 1, 1, 3, 3, 9, 9, 27, 27, 81)
<i>C</i> = 1	{1},162	{1},162
C = 2	{1,16},27	{1,9},26
<i>C</i> = 3	$\{1,4,32\},17$	{1,3,27},16
C = 4	{1,2,8,32},13	{1,3,9,27},12
<i>C</i> = 5	$\{1, 2, 4, 8, 32\}, 12$	$\{1, 3, 9, 27, 81\}, 10$
<i>C</i> = 6	$\{1, 2, 4, 8, 16, 32\}, 11$	_
<i>C</i> = 7	$\{1,2,4,8,16,32,64\},10$	_

- We have a smaller latency when C > 1
- We can use smaller repeated squarers (multiplexers) to get the same latency

Conclusions

A new algorithm for inversion in $GF(2^m)$ that has provably lower number of multiplications compared to the popular IT and outperforms it in about half of the cases for $1 \le m \le 1023$

The algorithm has some nice by-products that may be important in many implementations in practice

Conclusions

A new algorithm for inversion in $GF(2^m)$ that has provably lower number of multiplications compared to the popular IT and outperforms it in about half of the cases for $1 \le m \le 1023$

The algorithm has some nice by-products that may be important in many implementations in practice

Thank you! Questions?

