Reflection Cryptanalysis of PRINCE-like Ciphers

Hadi Soleimany¹, Céline Blondeau¹, Xiaoli Yu^{2,3}, Wenling Wu², Kaisa Nyberg¹, Huiling Zhang², Lei Zhang², Yanfeng Wang²

> ¹Department of Information and Computer Science, Aalto University School of Science, Finland

²Institute of Software, Chinese Academy of Sciences, P. R. China

³Graduate University of Chinese Academy of Sciences, P. R. China

FSE 2013

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
Outline				

2 Distinguishers

3 Key Recovery

4 Various Classes of α -reflection

5 Conclusions

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
0000				

2 Distinguishers

 Description of PRINCE-like Ciphers
 Distinguishers

 •0000
 00000

Key Recovery

Various Classes of α -reflection

n Conclusions

Description of PRINCE-like cipher

• Low-latency SPN block cipher was proposed at ASIACRYPT2012.

Distinguishers

Key Recovery

Various Classes of α -reflection

n Conclusions

Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction

Distinguishers 00000

Key Recovery

Various Classes of α -reflection

on Conclusions

Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 ||k_1|$.

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 ||k_1|$.

• $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 ||k_1|$.

- $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$
- With a property called α -reflection:

$$D(k_0||k_0'||k_1)() = E(k_0'||k_0||k_1 \oplus \alpha)()$$

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like cipher

- Low-latency SPN block cipher was proposed at ASIACRYPT2012.
- Based on the so-called FX construction
- The key is split into two parts of n bits $k = k_0 ||k_1|$.

- $k'_0 = (k_0 \gg 1) \oplus (k_0 \gg (n-1))$
- With a property called α -reflection:

$$D(k_0||k'_0||k_1)() = E(k'_0||k_0||k_1 \oplus \alpha)()$$

• Independently of the value of α , the designers showed that PRINCE is secure against known attacks.

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

The 2 midmost rounds

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

Total 12 rounds

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

The first rounds

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

The last rounds

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

Related constants:

 $RC_{2R-r+1} = RC_r \oplus \alpha$, for all $r = 1, \ldots, 2R$

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Description of PRINCE-like Cipher

The whitening key

Description of PRINCE-like Ciphers Distinguishers Key Recovery Various Classes of α-reflection Conclusions on Observation Obs

- PRINCE-like cipher with n = 64.
- Constant is defined as $\alpha = 0xc0ac29b7c97c50dd$.
- The *S*-layer is a non-linear layer where each nibble is processed by the same Sbox.

• M' is an involutory 64 × 64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0)$.

• M' is an involutory 64 × 64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0)$.

$$\hat{M}_0 = \begin{pmatrix} M_0 & M_1 & M_2 & M_3 \\ M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \end{pmatrix}, \quad \hat{M}_1 = \begin{pmatrix} M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \\ M_0 & M_1 & M_2 & M_3 \end{pmatrix}$$

• M' is an involutory 64 × 64 block diagonal matrix $(\hat{M}_0, \hat{M}_1, \hat{M}_1, \hat{M}_0)$.

$$\hat{M}_0 = \begin{pmatrix} M_0 & M_1 & M_2 & M_3 \\ M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \end{pmatrix}, \quad \hat{M}_1 = \begin{pmatrix} M_1 & M_2 & M_3 & M_0 \\ M_2 & M_3 & M_0 & M_1 \\ M_3 & M_0 & M_1 & M_2 \\ M_0 & M_1 & M_2 & M_3 \end{pmatrix}$$

 The second linear matrix *M* for PRINCE is obtained by composition of *M*′ and a permutation *SR* of nibbles by setting *M* = *SR* ◦ *M*′.

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
	0000			

Description of PRINCE-like Ciphers Distinguishers Key Recovery Various Classes of α -reflection Conclusions of α -reflect

Previous Works: Reflection Attack

• It has been applied on some ciphers and hash functions with Feistel construction (Kara 2008, Bouillaguet et al. 2010).

This work

Using probabilistic reflection property instead of deterministic approach.

Description of PRINCE-like Ciphers	Distinguishers 0●000	Key Recovery	Various Classes of α -reflection	Conclusions
Fixed Points				

Definition

Let $f : A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Description of PRINCE-like Ciphers	Distinguishers 0●000	Key Recovery	Various Classes of α -reflection	Conclusions
Fixed Points				

Definition

Let $f : A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Lemma

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a linear involution. Then the number of fixed points of f is greater than or equal to $2^{n/2}$.

Description of PRINCE-like Ciphers	Distinguishers 0●000	Key Recovery	Various Classes of α -reflection	Conclusions
Fixed Points				

Definition

Let $f : A \to A$ be a function on a set A. A point $x \in A$ is called a fixed point of the function f if and only if f(x) = x.

Lemma

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a linear involution. Then the number of fixed points of f is greater than or equal to $2^{n/2}$.

Idea

Take advantage of α -reflection property and the fact that always fixed points exist in midmost rounds of PRINCE-like ciphers.

Description of PRINCE-like Ciphers	Distinguishers ○○●○○	Key Recovery	Various Classes of α -reflection	Conclusions
Characteristic \mathcal{T}_1				

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

Description of PRINCE-like Ciphers	Distinguishers ○○●○○	Key Recovery	Various Classes of α -reflection	Conclusions
Characteristic \mathcal{T}_1				

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

Description of PRINCE-like Ciphers	Distinguishers ○○●○○	Key Recovery	Various Classes of α -reflection	Conclusions
C \cdot \cdot \cdot \cdot τ				

Characteristic \mathcal{I}_1

$$\mathcal{P}_{\mathcal{I}_1} = \mathcal{P}_{F_{M'}} = \frac{|F_{M'}|}{2^n}.$$

	00000	000	000000	00
Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \, | \, S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

C \cdot \cdot \cdot \cdot τ				
0000	00000	000	0000000	00
Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of a reflection	ses of oureflection Conclusions

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \, | \, S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

Description of PRINCE-like Ciphers Distinguishers Key Recovery Various

Characteristic \mathcal{I}_2

$$\mathcal{P}_{\mathcal{I}_2} = 2^{-n} \# \left\{ x \in \mathbb{F}_2^n \, | \, S^{-1}(M'(S(x))) \oplus x = \alpha \right\}.$$

Description of PRINCE-like Ciphers	Distinguishers ○○○●○	Key Recovery	Various Classes of α -reflection	Conclusions
Characteristic \mathcal{T}_{2}				

If $\mathcal{P}_{\mathcal{I}_2} = 0$ then we have impossible differential.

Distinguishers ○○○○● Key Recovery

Various Classes of α -reflectionConclusions000000000

External Characteristic $\mathcal{P}_{\mathcal{C}_r}$

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
		000		

Description of PRINCE-like Ciphers	Distinguishers 00000	Key Recovery ●00	Various Classes of α -reflection	Conclusions
Key Recovery				

cco

Description of PRINCE-like Ciphers	Distinguishers 00000	Key Recovery ●00	Various Classes of α -reflection	Conclusions
Key Recovery				

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery ●00	Various Classes of α -reflection	Conclusions 00
Key Recovery				

Description of PRINCE-like Ciphers Distinguishers $\begin{array}{c} \mathsf{Key} \ \mathsf{Recovery} \\ \circ \circ \circ \circ \end{array}$ Various Classes of α -reflection Conclusions of α -reflection o

Key Recovery Nibble by Nibble

 $\oplus S(C(j) \oplus k'_0(j) \oplus k_1(j) \oplus RC_{2R}(j))$

Description of PRINCE-like Ciphers Distinguishers $\begin{array}{c} \text{Ney Recovery} \\ 0.000 \end{array}$ $\begin{array}{c} \text{Various Classes of } \alpha \text{-reflection} \\ 0.0000 000 \end{array}$ $\begin{array}{c} \text{Conclusions} \\ 0.0000 000 \end{array}$

Key Recovery for Passive Nibble

 $P(j) \oplus k_0(j) \oplus C(j) \oplus k'_0(j) \oplus \alpha(j) = 0,$

- The difference after passing through the S-boxes is still zero.
- The value of $k_1(j)$ need not be known.

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
			000000	

 Description of PRINCE-like Ciphers
 Distinguishers
 Key Recovery
 Various Classes of α-reflection
 Conclusions

 0000
 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Maximizing Probability $\mathcal{P}_{\mathcal{C}}$ of Characteristic

To maximize $\mathcal{P}_{\mathcal{C}}$ we can either use

- Cancellation idea.
- Branch and Bound algorithm.

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of a
			000000

Cancellation Idea

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection 000000	Conclusio 00
· · · · · ·				

Cancellation Idea

With $\mathcal{P} = \Pr_{\mathbf{X}} \left[S(\mathbf{X}) \oplus S(\mathbf{X} \oplus \alpha) = M^{-1}(\alpha) \right]$

Description	of	PRINCE-like	Ciphers	D

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions $0 \bullet 00000$ 00

Cancellation Idea

Description	of	PRINCE-like	Ciphers	Dis

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions $0 \bullet 00000$ 00

Cancellation Idea

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α-reflection ο●οοοοο	Conclusi 00

Cancellation Idea

With $\mathcal{P} = \Pr_{\mathbf{X}} \left[S(\mathbf{X}) \oplus S(\mathbf{X} \oplus \alpha) = M^{-1}(\alpha) \right]$ there is an iterative characteristic over four rounds of a PRINCE-like cipher.

O0000

Key Recovery

Various Classes of α -reflection 000000

Conclusions

Best α with Cancellation Idea on 12 rounds

α	Δ^*	$w(\Delta^*)$	$\mathcal{P}_{\mathcal{C}_{4}}$	Data Compl.	Time Compl.
0x8400400800000000	0x8800400400000000	4	2 ⁻²²	2 ^{57.95}	2 ^{71.37}
0x8040000040800000	0x8080000040400000	4	2-22	2 ^{57.95}	2 ^{71.37}
0x0000408000008040	0x0000404000008080	4	2-22	2 ^{57.95}	2 ^{71.37}
0x000000048008004	0x0000000044008008	4	2 ⁻²²	2 ^{57.95}	2 ^{71.37}
0x0000440040040000	0x0000440040040000	4	2-24	2 ^{60.27}	2 ^{73.69}
0x800800000008800	0x800800000008800	4	2-24	2 ^{60.27}	2 ^{73.69}

α	Δ*	$w(\Delta^*)$	$\mathcal{P}_{\mathcal{C}_{4}}$	Data Compl.	Time Compl.
0x0108088088010018	0x0000001008000495	5	2 ⁻²⁶	2 ^{62.78}	2 ^{80.2}
0x0088188080018010	0x00000100c09d0008	5	2 ⁻²⁶	2 ^{62.78}	2 ^{80.2}
0x0108088088010018	0x000000100800d8cc	6	2 ⁻²⁶	2 ^{62.83}	2 ^{84.25}
0x0001111011010011	0x1101100110000100	7	2 ⁻²⁸	2 ^{63.45} (a = 32)	288.87

Description of PRINCE-like Ciphers Distinguishers α_{000} Distinguis

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Description of PRINCE-like Ciphers Distinguishers

Key Recovery

Various Classes of α -reflection Conclusions 0000000

Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

$$\alpha = \left[\begin{array}{c} 0 \mathrm{x7} \ 0 \mathrm{x1} \ 0 \mathrm{xc} \ 0 \mathrm{xb} \\ 0 \mathrm{x9} \ 0 \mathrm{x5} \ 0 \mathrm{x9} \ 0 \mathrm{x3} \\ 0 \mathrm{x9} \ 0 \mathrm{xa} \ 0 \mathrm{x5} \ 0 \mathrm{x9} \\ 0 \mathrm{x3} \ 0 \mathrm{x6} \ 0 \mathrm{x8} \ 0 \mathrm{xd} \end{array} \right],$$

Distinguishers

Key Recovery

Various Classes of α -reflectionConclusions000000000

Number of non-zero nibbles of α

Observation

The best results so far have been obtained for α with a small number of non-zero nibbles.

Question

Would α with many non-zero nibbles guarantee security against reflection attacks?

$$\alpha = \begin{bmatrix} 0x7 & 0x1 & 0xc & 0xb \\ 0x9 & 0x5 & 0x9 & 0x3 \\ 0x9 & 0xa & 0x5 & 0x9 \\ 0x3 & 0x6 & 0x8 & 0xd \end{bmatrix}, \quad M^{-1}(\alpha) = \begin{bmatrix} 0x7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0xb \\ 0 & 0 & 0xd & 0 \\ 0 & 0x9 & 0 & 0 \end{bmatrix}$$

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
Truncated Attack				

Assume
$$\alpha$$
 is such that $M^{-1}(\alpha) = \begin{bmatrix} * & 0 & 0 & 0 \\ 0 & 0 & 0 & * \\ 0 & * & 0 & 0 \\ 0 & * & 0 & 0 \end{bmatrix}$ where $*$ can be any arbitrary value. For six rounds $\mathfrak{R}_{R-2} \circ \cdots \circ \mathfrak{R}_{R+3}$, the following truncated characteristic:

$$Y_{R+3}^{O} \oplus X_{R-2}^{I} = \begin{bmatrix} * & 0 & 0 & 0 \\ * & 0 & 0 & * \\ * & 0 & * & 0 \\ * & * & 0 & 0 \end{bmatrix} \oplus \alpha,$$

holds with probability $\mathcal{P}_{F_{M'}}=\frac{|F_{M'}|}{2^n}=2^{-32}.$

Description of PRINCE-like Ciphers	Distinguishers 00000	Key Recovery	Various Classes of α -reflection	Conclusions
Truncated Attack				

Similar characteristics can be obtained for α such that:

$$M^{-1}(\alpha) = \begin{bmatrix} 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & * & 0 \end{bmatrix} \text{ or } M^{-1}(\alpha) = \begin{bmatrix} 0 & 0 & 0 & * & 0 \\ 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \end{bmatrix} \text{ or }$$
$$M^{-1}(\alpha) = \begin{bmatrix} 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \end{bmatrix}.$$

- This truncated characteristic over six rounds exists for 4 \times (2¹⁶ 1) \approx 2¹⁸ values of α ,
- Key recovery attack on 8 rounds can be done by data complexity $2^{35.8}$ and time complexity of $2^{96.8}$ memory accesses in addition of 2^{88} full encryption.

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
				••

2 Distinguishers

3 Key Recovery

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions ●○
Conclusions				

- We introduced new generic distinguishers on PRINCE-like ciphers.
- The security of PRINCE-like ciphers depends strongly on the choice of the value of α .
- We identified special classes of α for which 4, 6, 8 or 10 rounds can be distinguished from random.
- The weakest class allows an efficient key-recovery attack on 12 rounds of the cipher.
- Our best attack on PRINCE with original α breaks a reduced 6-round version.
- New design criteria for the selection of the value of α for PRINCE-like ciphers are obtained.

Description of PRINCE-like Ciphers	Distinguishers	Key Recovery	Various Classes of α -reflection	Conclusions
				00

Thanks for your attention!