
Relations Between the Generalizations of
Differential and Linear Cryptanalysis
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Introduction

Block cipher :

EK : Fn
2 → Fn

2
x 7→ y

Iterative block cipher :

- - - - -x yFK1 FK2 FKr FKr+1

Statistical attacks: Attacks that take advantage of a
non-uniform behaviour of the cipher
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Differential Cryptanalysis [Biham Shamir 90]

Difference between plaintext and ciphertext pairs

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference : δ
Output Difference : ∆

Differential Probability :

P[δ → ∆] = Px [ Ek (x)⊕ Ek (x ⊕ δ) = ∆]
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Generalisations of Differential Cryptanalysis
Set of input differences : δ ∈ A
Set of output differences : ∆ ∈ B

P[A→ B] =
1
|A|

∑
δ∈A

∑
∆∈B

P[δ → ∆]

Truncated Differential (TD) [Knudsen 94] :
Set A and B generally with structure : linear, affine spaces

Impossible Differential (ID) [Knudsen 99] :
Truncated differential distinguisher with probability 0

Multiple Differential [Blondeau Gérard 11] :
Sets A and B without structure

Multiple Differential using LLR or χ2 [Blondeau Gérard Nyberg 12]
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Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext, key and ciphertext bits
x

y = Ek(x)
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Input mask : u
Output mask : v

Bias :

ε = 2−n#{x ∈ Fn
2| u · x ⊕ v · y = 0} − 1

2

Correlation :

corx (u, v) = 2 · Px [u · x ⊕ v · Ek (x) = 0]− 1
= 2 · ε
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Generalizations of Linear Cryptanalysis

Set of masks (u, v) ∈ U × V \ {0,0}

Capacity :

C =
∑

u∈U\{0}

∑
v∈V\{0}

cor2
x (u, v)

Multiple Linear [Biryukov et al 04] :
Set U and V without structure

Multidimensional Linear (ML) [Hermelin et al 08] :
Set U and V are linear or affine spaces

Zero-Correlation Linear (ZC) [Bogdanov et al 10] :
(Multidimensional) linear distinguisher with capacity 0
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Link between Differential and Linear Cryptanalysis

[Chabaud Vaudenay 94] :

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
u∈Fn

2

∑
v∈Fm

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

I Used to show that AB functions are APN
(In general used for vector-Boolean functions)
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Recent Links Between

The Statistical Attacks
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Outline

Computing Differential Probabilities using Linear Correlations
Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks
Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack
The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers
Mathematical and Structural Relation

Conclusion



Link Between Statistical Attacks

10/52

Outline

Computing Differential Probabilities using Linear Correlations
Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks
Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack
The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers
Mathematical and Structural Relation

Conclusion



Link Between Statistical Attacks

11/52

Computation

Chabaud-Vaudenay’s link:

P[δ
F→ ∆] = 2−n

∑
u∈Fn

2

∑
v∈Fn

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

Complexity: Computation of 22n correlations!!!
⇒ Impossible in practice

How to reduce the complexity:
I Using truncated output differences

⇒ Reduce the sum over v

I Assuming δ of small weight
⇒ Reduce the sum over u

n︷ ︸︸ ︷
F

︸ ︷︷ ︸
n
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Truncated Output Difference n︷ ︸︸ ︷
F

︸ ︷︷ ︸ ︸ ︷︷ ︸
q r︸ ︷︷ ︸

n

Setting:
I Affine space ∆q ⊕ Fr

2
I Let G be a projection of F

P[δ
F→ (∆q ⊕ Fr

2)] = P[δ
G→ ∆q]
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Truncated Output Difference n︷ ︸︸ ︷
G
�
�
�
�

︸ ︷︷ ︸
q︸ ︷︷ ︸

n

Setting:
I Affine space ∆q ⊕ Fr

2
I Let G be a projection of F

P[δ
F→ (∆q ⊕ Fr

2)] = P[δ
G→ ∆q]
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Truncated Output Difference n︷ ︸︸ ︷
G
�
�
�
�

︸ ︷︷ ︸
q︸ ︷︷ ︸

n

Setting:
I Affine space ∆q ⊕ Fr

2
I Let G be a projection of F

P[δ
F→ (∆q ⊕ Fr

2)] = P[δ
G→ ∆q]

Link:
P[δ

G→ ∆q] = 2−q
∑
u∈Fn

2

∑
vq∈Fq

2

(−1)u·δ⊕vq ·∆q cor2
x (u, vq)

Complexity: Computation of 2n+q correlations
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Assuming δ of Small Weight

Assumption: δ = (δs, δt ) ∈ Fs
2 × Ft

2 with δt = 0

Fundamental Theorem [Nyberg 93]:∑
u∈Fn

2

(−1)u·δcor2
x (u, vq)=2−t

∑
xt∈Ft

2

∑
us∈Fs

2

(−1)us·δscor2
xs (us, vq)

Approximation:∑
u∈Fn

2

(−1)u·δcor2
x (u, vq)≈ 1

|A|
∑
xt∈A

∑
us∈Fs

2

(−1)us·δscor2
xs (us, vq)

n︷ ︸︸ ︷
s︷ ︸︸ ︷ t︷ ︸︸ ︷

G
�
�
�
�

︸ ︷︷ ︸
q
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Assuming δ of Small Weight

Assumption: δ = (δs, δt ) ∈ Fs
2 × Ft

2 with δt = 0

Fundamental Theorem [Nyberg 93]:∑
u∈Fn

2

(−1)u·δcor2
x (u, vq)=2−t

∑
xt∈Ft

2

∑
us∈Fs

2

(−1)us·δscor2
xs (us, vq)

Approximation:∑
u∈Fn

2

(−1)u·δcor2
x (u, vq)≈ 1

|A|
∑
xt∈A

∑
us∈Fs

2

(−1)us·δscor2
xs (us, vq)

n︷ ︸︸ ︷
s︷ ︸︸ ︷ log(|V |)︷ ︸︸ ︷

G
�
�
�
�

︸ ︷︷ ︸
q
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Method of Computation

Estimated Truncated Differential Probability:

P[δ
G→ ∆q]≈2−q

|A|
∑
xt∈A

∑
us∈Fs

2

∑
vq∈Fq

2

(−1)us·δs⊕vq ·∆q cor2
xs (us, vq)

Complexity: Computation of 2s+q|A| correlations

Accuracy: Depends on the choice of s and A
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PRESENT

[Bogdanov et al 08]
I 64-bit cipher
I 80-bit (128-bit) key
I 31 rounds

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
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Setting of Experiments on PRESENT

PRESENT:
I Single-bit linear trails are dominant
I Computation of correlations using transition matrices

as for instance in [Cho 10]

Setting:
I Truncated differential distribution cryptanalysis

Using LLR statistical test [Blondeau Gérard Nyberg 12]
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Truncated Differential Distribution Cryptanalysis
Experiments on PRESENT :

q = 4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35

P
S

log2(N)

Exp. round 9
Th. round 9

Exp. round 10
Th. round 10

Exp. round 11
Th. round 11

q = 12

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35

P
S

log2(N)

Exp. round 9
Th. round 9

Exp. round 10
Th. round 10

Exp. round 11
Th. round 11

Cryptanalysis:
I On 19 rounds

Previously:
I Multiple differential cryptanalysis: 18 rounds
I Multidimensional linear cryptanalysis: 26 rounds
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Outline

Computing Differential Probabilities using Linear Correlations
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Statistical Saturation (SS) Attack
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Link between Differential and Linear Cryptanalysis
[Chabaud Vaudenay 94] :

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
u∈Fn

2

∑
v∈Fm

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0
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2
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∑
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2

∑
v∈Fm

2
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︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

Generalization [Blondeau Nyberg 14]:

I ML : [(us,0), (vq,0)]us∈Fs
2\{0}, vq∈Fq

2
with capacity C

I TD : [(0, δt ), (0,∆r )]δt∈Ft
2, ∆r∈Fr

2
with probability p
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Link between Differential and Linear Cryptanalysis
[Chabaud Vaudenay 94] :

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
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2

∑
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2
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︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits
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︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits
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Generalization [Blondeau Nyberg 14]:

I ML : [(us,0), (vq,0)]us∈Fs
2\{0}, vq∈Fq

2
with capacity C

I TD : [(0, δt ), (0,∆r )]δt∈Ft
2, ∆r∈Fr

2
with probability p

p = 2−q(C + 1)

I TD is a chosen plaintext (CP) attack
I ML is a known plaintext (KP) attack
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Data Complexity of a Distinguishing Attack

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

M · (p − 2−q)2 · ϕ
2
a,

where M is the size of a structure (usually M = 2t )
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n bits
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[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

M · (p − 2−q)2 · ϕ
2
a,

where M is the size of a structure (usually M = 2t )

I For p = 2−q(C + 1) :
NTD =

2q+1

2t · C2 · ϕa
2
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Data Complexity of a Distinguishing Attack
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[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I For p = 2−q(C + 1) :
NTD =

2q+1

2t · C2 · ϕa
2

NTD =
1
2n · (N

ML)2
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Data Complexity of a Distinguishing Attack

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r
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[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I For p = 2−q(C + 1) :
NTD =

2q+1

2t · C2 · ϕa
2

NTD =
1
2n · (N

ML)2

NTD ≤ NML with equality when using the full codebook
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Truncated Differential Distinguisher

D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size M
for M values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+= 1

For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference on the q bits

︷ ︸︸ ︷ ︷ ︸︸ ︷s bits t bits

0 δt

0 ∆r

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸

x = (xs, xt )

y = (yq, yr )

M : size of a structure
S : number of structures

NTD = S ·M
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Truncated Differential Distinguisher

D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size M
for M values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+= 1

For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference on the q bits

Time Complexity : Verifying all pairs
Time ≈ S ·M2/2

Memory Complexity : Storing all ciphertexts inside a structure
Memory ≈ M
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Multidimensional Linear Distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for NML plaintexts do
(yq, yr ) = E((xs, xt ))
T [(xs, yq)]+= 1

for all (xs, yq) do
D+= (T [(xs, yq)]− N/2q+s)2

For NML plaintexts
Count the number of
occurrences of each pair (xs, yq)

Compute the statistic

︷ ︸︸ ︷ ︷ ︸︸ ︷s bits t bits

us 0

vq 0
q bits r bits

︸ ︷︷ ︸ ︸ ︷︷ ︸

x = (xs, xt )

y = (yq, yr )
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Multidimensional Linear Distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for NML plaintexts do
(yq, yr ) = E((xs, xt ))
T [(xs, yq)]+= 1

for all (xs, yq) do
D+= (T [(xs, yq)]− N/2q+s)2

For NML plaintexts
Count the number of
occurrences of each pair (xs, yq)

Compute the statistic

Time Complexity : Reading all messages
Time ≈ NML

Memory Complexity : Storing the number of occurrences of (x i
s, y

j
q)i,j

Memory ≈ 2s+q
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Complexities of TD and ML Attacks
I ML distinguisher :

Data = NML

Time ≈ NML

Memory ≈ 2s+q

I TD distinguisher :

Data = NTD = S · 2t < NML

Time ≈ NTD · 2t−1

Memory ≈ 2t

Question : Can we decrease the time complexity of a TD attack?

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0
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TD with Less Time Complexity
I Dominant part: Verifying the output difference for each pair

of ciphertexts

Example :

I 4 ciphertexts : (y1,b1) (y2,b2) (y1,b3) (y3,b4)
1 pair with equal yi

I Previous algorithm : 6 comparisons

Improved Version :
I Count the occurrences of each yi :

y1 y2 y3
T [yi ] 2 1 1

and compute D =
∑

i T [yi ](T [yi ]− 1)/2 = 1
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I 4 ciphertexts : (y1,b1) (y2,b2) (y1,b3) (y3,b4)
1 pair with equal yi

I Previous algorithm : 6 comparisons

Improved Version :
I Count the occurrences of each yi :

y1 y2 y3
T [yi ] 2 1 1

and compute D =
∑

i T [yi ](T [yi ]− 1)/2 = 1
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TD with Less Time Complexity
D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size 2q

for M values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+= 1

for all yq ∈ Fq
2 do

D+= T [yq](T [yq]− 1)/2

For S structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

Data = NTD = S ·M < NML

Time ≈ max(NTD,S · 2q)

Memory ≈ 2q
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KP ML and CP TD Attacks : An Example on PRESENT
[Cho 10] :

I ML distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round : (In Cho’s ML characteristic)

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 · 24 linear masks

16-key bits can be tested

I KP ML⇒ Guess 16-key bits
Using the link between TD and ML

Chosen Plaintext⇒ Guess 4,8,12,16 bits
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KP ML and CP TD Attacks : An Example on PRESENT
[Cho 10] :

I ML distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round : (In Cho’s ML characteristic)

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 bits are fixed

Fixation of 4 bits
12-key bits can be tested

I KP ML⇒ Guess 16-key bits
Using the link between TD and ML

I CP TD⇒ Guess 4,8,12,16-key bits
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Example of CP TD Attack on 24 Rounds of PRESENT
Data Complexity (Data) :

48

50

52

54

56

58

60

62

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

KP ML
CP TD fixing 4 bits
CP TD fixing 8 bits
CP TD fixing 12 bits

I The Data of a KP ML is proportional to ϕa = Φ−1(1− 2−a)

I The Data of a CP TD is proportional to ϕ2
a

I Depending of the size of the fixation, the data complexity of
a CP ML attack can be smaller than for a KP ML attack
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Example of CP TD Attack on 24 Rounds of PRESENT

Fixing 4 bits :

Model a Data Memory Time1 Time2

CP TD 10 254.75 229 254.75 270

KP ML 5 257.14 232 257.14 275

Time1: Complexity of the distillation phase
Time2: Complexity of the search phase

I Data, time and memory complexities of the CP TD attack
are smaller than those of a KP ML attack
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Example of CP TD Attack on 26 Rounds of PRESENT

58

59

60

61

62

63

64

65

66

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

KP ML
CP TD fixing 4 bits
CP TD fixing 8 bits

Model a Data Memory Time1 Time2

CP TD 4 263.16 229 263.16 276

KP ML 4 262.08 232 262.08 276

I A CP TD attack on 26 rounds of PRESENT with less
memory than the KP ML attack

I The previous differential-type attack was on 19 rounds
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Outline

Computing Differential Probabilities using Linear Correlations
Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks
Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack
The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers
Mathematical and Structural Relation

Conclusion
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Statistical Saturation (SS) Attack [Collard Standaert 09]

Idea :
I “Dual” of the saturation attack

I Takes advantage of several plaintexts with some fixed bits
while the others vary randomly

I We observe the diffusion of the fixed bits during the
encryption process

Application on PRESENT [Bogdanov et al 08] :
I Distinguisher on 20 / 21 rounds

I Key-recovery on 24 rounds
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Statistical Saturation Distinguisher
D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size 2q

for M values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+= 1

for all yq ∈ Fq
2 do

D+= T [yq](T [yq]− 1)/2

For S structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

This distinguisher is the same as the improved truncated
differential distinguisher
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Link between SS, TD and ML distinguishers

Link [Leander 11] :
For a fixed xs ∈ Fs

2, we denote by C(xs) the capacity of the
distribution of yq :

C = 2−s
∑

xs∈Fs
2

C(xs)

I SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack
ML is a known plaintext (KP) attack

I SS attacks link algorithmically with TD attacks



Link Between Statistical Attacks

32/52

Link between SS, TD and ML distinguishers

Link [Leander 11] :
For a fixed xs ∈ Fs

2, we denote by C(xs) the capacity of the
distribution of yq :

C = 2−s
∑

xs∈Fs
2

C(xs)

I SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack
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2, we denote by C(xs) the capacity of the
distribution of yq :
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2
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ML is a known plaintext (KP) attack
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Link between SS, TD and ML distinguishers

Link [Leander 11] :
For a fixed xs ∈ Fs

2, we denote by C(xs) the capacity of the
distribution of yq :

C = 2−s
∑

xs∈Fs
2

C(xs)

I SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack
ML is a known plaintext (KP) attack

I SS attacks link algorithmically with TD attacks
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On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 4 rounds with M = 232

0

10

20

30

40

50

60

5 10 15 20

−
lo

g(
C

),
lo

g(
N

)

Round r of the distinguisher

Attack on 15 rounds
with N = 230.54

Attack on 17 rounds
with N = 240.52

Attack on 19 rounds
with N = 250.96

[Collard Standaert 09]
Data increases linearly

[Leander 11]
Estimate of the capacity C

[Our work]

Data is N =
2q+1

M · C2 · ϕ
2
a
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On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 4 rounds with M = 232

0

10

20

30

40

50

60

5 10 15 20

−
lo

g(
C

),
lo

g(
N

)

Round r of the distinguisher

Attack on 15 rounds
with N = 230.54

Attack on 17 rounds
with N = 240.52

Attack on 19 rounds
with N = 250.96

[Collard Standaert 09]
Data increases linearly

[Leander 11]
Estimate of the capacity C

[Our work]

Data is N =
2q+1

M · C2 · ϕ
2
a

I The attack has been verified experimentally [Kerckhof et al 11]
I Our estimate match with the experiments

(N around 251 for 19 rounds)
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Outline

Computing Differential Probabilities using Linear Correlations
Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks
Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack
The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers
Mathematical and Structural Relation

Conclusion
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Mathematical Relation between ID and ZC
[Blondeau Nyberg 2013]

I TD : [(0,∆t ), (0, Γr )]∆t∈Ft
2\{0}, Γr∈Fr

2
with probability p

I ML : [(Us,0), (Vq,0)]Us∈Fs
2\{0}, Vq∈Fq

2
with capacity C

2t − 1
2t · p = 2−q · (C + 1)− 2−t

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

︷ ︸︸ ︷ ︷ ︸︸ ︷
Us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸Vq 0

6

?

ZC C = 0

If t = q : ZC and ID distinguishers are mathematically equivalent
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Mathematical Relation between ID and ZC
[Blondeau Nyberg 2013]

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

︷ ︸︸ ︷ ︷ ︸︸ ︷
Us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸Vq 0

6

?

ZC C = 0

If t = q : ZC and ID distinguishers are mathematically equivalent

Observation :

I Independent of the cipher and its structure

However: (2t − 1)(2n−t − 1) ≈ 2n IDs are involved

I In practice, the considered spaces are smaller
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ID and ZC Distinguishers

Number of Rounds of the Distinguisher:
Ciphers ID ZC

LBlock / TWINE 14 14
MARS 11 11
SMS4 11 11

Skipjack 24 17
Skipjack (only rule A) 16 16

Four-Cell 18 12

Example of Patterns (for LBlock) :
I Impossible differential :

(00000000,00∆00000) 9 (0Γ000000,00000000)
I Zero correlation approximation :

(000U0000,00000000) 9 (00000000,0V000000)
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ID and ZC Distinguishers

Number of Rounds of the Distinguisher:
Ciphers ID ZC

LBlock / TWINE 14 14
MARS 11 11
SMS4 11 11

Skipjack 24 17
Skipjack (only rule A) 16 16

Four-Cell 18 12

Example of Patterns (for LBlock) :
I Impossible differential :

(00000000,00∆00000) 9 (0Γ000000,00000000)
I Zero correlation approximation :

(000U0000,00000000) 9 (00000000,0V000000)
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Example of Constructions

Feistel-Type Fs - gg
PPPPPPPPPPPPPPP
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F
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�
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XXXXXXXXXXXXXXX

s
F F

s�gg
�

�
�
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Z
Z
Z
Z
Z
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���
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H
HHH

HHH
HHH

EGNF-Type
PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F

- -

- -

-
-

gg gggggg
ss

s s
PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F

- -

- -

-

gg gggg
ss s
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Representation of the Round Function

I F-layer
I X-layer
I P-layer

PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F
- -

- -

-
-

gg gggggg
ss

s s
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Representation of the Round Function

I F-layer
I X-layer
I P-layer

PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F
- -

- -

-
-

gg gggggg
ss

s s

F =


1 0 0 0
0 1 0 0
0 F 1 0
F 0 0 1

 ,



Link Between Statistical Attacks

38/52

Representation of the Round Function

I F-layer
I X-layer
I P-layer

PPPPPPPPPP
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PPPPPPPPPP

F

F
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- -

-
-

gg gggggg
ss

s s

F =


1 0 0 0
0 1 0 0
0 F 1 0
F 0 0 1

 , X =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1
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Representation of the Round Function

I F-layer
I X-layer
I P-layer

PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F
- -

- -

-
-

gg gggggg
ss

s s

F =


1 0 0 0
0 1 0 0
0 F 1 0
F 0 0 1

 , X =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1



P =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
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Representation of the Round Function

I F-layer
I X-layer
I P-layer

PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F
- -

- -

-
-

gg gggggg
ss

s s

F =


1 0 0 0
0 1 0 0
0 F 1 0
F 0 0 1

 , X =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1



P =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , and R = P · X · F
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Rules to find ZC and ID distinguishers
Differential Context :

rδ1

δ2

δ3

δ3 = δ1 = δ2 eδ1

δ2

δ3

δ3 = δ1 ⊕ δ2

δ1

δ2

F
δ1 = δ2 = 0

δ1 6=0 and δ2 6=0

Linear Context :

ru1

u2

u3

u3 = u1 ⊕ u2 eu1

u2

u3

u3 = u1 = u2

u1

u2

F
u1 = u2 = 0

u1 6=0 and u2 6=0
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Rules to find ZC and ID distinguishers
Differential Context :

rδ1

δ2

δ3

δ3 = δ1 = δ2 eδ1

δ2

δ3

δ3 = δ1 ⊕ δ2

δ1

δ2

F
δ1 = δ2 = 0

δ1 6=0 and δ2 6=0

Linear Context :

ru1

u2

u3

u3 = u1 ⊕ u2 eu1

u2

u3

u3 = u1 = u2

u1

u2

F
u1 = u2 = 0

u1 6=0 and u2 6=0

e and r ”play orthogonal roles”



Link Between Statistical Attacks

40/52

Mirror Round Function

PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F

- -

- -

-
-

gg gggggg
ss

s s
PPPPPPPPPP

����������

����������

PPPPPPPPPP

F

F

� �

� �

�
�

gggg gggg
s s
s s

R = P · X · F M = P · X T · FT

I M is the matrix representation of the mirror round function

I In generalMT 6= R

I Used to find ZC distinguishers [Soleimany Nyberg 2013]
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Example of ID distinguisher
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Example of ZC distinguisher

F Fs - e s - e
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Matrix Method

Impossible Differential Context :
I Truncated input difference ∆

I Truncated output difference Γ

I If there is an inconsistency between Rm ·∆ and R−` · Γ,
we have an ID distinguisher on m + ` rounds

Zero-Correlation Context :
I Truncated input mask U
I Truncated output mask V

I If there is an inconsistency betweenMm · U andM−` · V ,
we have a ZC distinguisher on m + ` rounds
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Equivalence between ID and ZC distinguishers
If it exists a linear relation betweenM and R or R−1,

the existence of an ID distinguisher involving M differentials is
equivalent to the existence of a ZC distinguisher involving M

linear masks.

Given Q a permutation matrix, the relation is
I Feistel-type (R = P · F) :

R = Q ·M · Q−1 or R = Q ·M−1 · Q−1

I Skipjack-type (R = P · X · F) :

R = Q ·M · Q−1 or F · P · X = Q ·M−1 · Q−1

I EGFN-type (R = P · X · F) :

R = Q·M·Q−1 or R = Q·M−1·Q−1 or F·P·X = Q·M−1·Q−1



Link Between Statistical Attacks

45/52

Illustration of the Proof for a Type-I Feistel

Round function

Fs - gg
PPPPPPPPPPPPPPP
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R = P · F

Inverse function

F s��gg
@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

���������������

R−1 = P−1 · F−1

= P−1 · (P · F−1 · P−1)

A B C D

B ⊕ F (A) C D A
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Illustration of the Proof for a Type-I Feistel

Round function

Fs - gg
PPPPPPPPPPPPPPP

�
�
�

�
�

�
�

�
�
�

�
�

�
�
�

A B C D

B ⊕ F (A) C D A

R = P · F

Inverse function

F s��gg
@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

���������������

R−1 = P−1 · F−1

α β γ δ

Permutation of the branches

F s� �gg
PPPPPPPPPPPPPPP

�
�
�

�
�

�
�

�
�
�

�
�

�
�
�

α δ γ β

& %
(α, β, δ, γ)→ (α, δ, γ, β)
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& %
M = Q · R−1 · Q−1

Mm · U 6≡ M−` · V︸ ︷︷ ︸
ZC on m + ` rounds

⇐⇒ Q · R−m · Q−1 ·∆ 6≡ Q · R` · Q−1 · Γ︸ ︷︷ ︸
ID on `+ m rounds
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Illustration for Proof for Skipjack Rule-A
Round function
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The inverse function is “equivalent” to the mirror function
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Example of Equivalence
Round Function of the Twine Block Cipher:

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕F F F F F F F F

R = P · F with F =



1 0 0 · · · 0 0 0
F 1 0 0 0 0
0 0 1 0 0 0

· · ·
0 0 0 0 1 0
0 0 0 0 F 1

 ,

P defined from
π = {5,0,1,4,7,12,3,8,13,6,9,2,15,10,11,14}

We haveM = Q · R · Q−1 for Q defined from

γ = {16,15,12,11,14,13,10,9,8,7,4,3,6,5,2,1}
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Example of Inequivalence
I Some of the Feistels of [Suzaki et al 2010]

I For instance R = P · F with F =


1 0 · · · 0 0
F 1 0 0

· · ·
0 0 1 0
0 0 F 1


and P is defined from
π = {1,2,9,4,11,6,7,8,5,12,13,10,3,0}

I The original Skipjack (ID: 24 rounds, ZC: 17 rounds)
I Rule-B followed by Rule-A is equivalent to

F F

s�gg
�

�
�
�

�

Z
Z
Z
Z
Z

�
���

���
���

H
HHH

HHH
HHH
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Outline

Computing Differential Probabilities using Linear Correlations
Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks
Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack
The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers
Mathematical and Structural Relation

Conclusion
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Differential-Linear Cryptanalysis

[Langford and Hellman 94] [Biham et al 02]

I E = E0 ◦ E1

I A truncated differential on E0

I A linear approximation on E1

In [Blondeau Leander Nyberg 14]:
I We analyze the model.
I We generalize it to the case of multiple linear

approximations and multiple input differences.
I We show that a differential-linear attack is a truncated

differential attack.



Link Between Statistical Attacks

51/52

Integral distinguishers and ZC distinguishers

The link of [Bogdanov et al 12]:

Let F : Fα2 × Fβ2 → Fγ2 × Fδ2 a cipher with
H(x , y) = (H1(x , y),H2(x , y)).
If the input and output linear masks u and v are independent,
the approximation <v ,H(x)> ⊕ <u, x> has correlation zero
for any u = (u1,0), and any v = (v1,0) 6= 0 (ZC distinguisher) if
and only if the function H1(λ, y) is balanced for any λ (ZC
integral distinguisher).

A ZC distinguisher with independent masks on r rounds⇒ an
integral distinguisher on r ′ ≥ r rounds

An integral distinguisher on r rounds with balanced output set
⇒ a ZC distinguisher on r rounds with independent masks
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Conclusion

I Some strong relations between statistical attacks have
been identified in the last 3 years

I Nevertheless some questions remain regarding the links
with some other statistical attacks

I Based on these relations we wonder if we can simplify the
security analysis of a symmetric cryptographic primitive
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