

Relations Between the Generalizations of Differential and Linear Cryptanalysis

Céline Blondeau

November 14, 2014 Université de Rennes

Introduction

Block cipher :

$$egin{array}{rcl} {\mathbb F}_{{\mathcal K}}^n & : & {\mathbb F}_2^n & o & {\mathbb F}_2^n \ & & x & \mapsto & y \end{array}$$

Iterative block cipher :

$$x \longrightarrow F_{K_1} \longrightarrow F_{K_2} \longrightarrow F_{K_r} \longrightarrow F_{K_{r+1}} \longrightarrow y$$

Statistical attacks: Attacks that take advantage of a non-uniform behaviour of the cipher

l

Differential Cryptanalysis [Biham Shamir 90]

Difference between plaintext and ciphertext pairs

Input difference : δ Output Difference : Δ

Differential Probability :

 $\mathbf{P}[\delta \to \Delta] = P_x[E_k(x) \oplus E_k(x \oplus \delta) = \Delta]$

Generalisations of Differential Cryptanalysis

Set of input differences : $\delta \in A$ Set of output differences : $\Delta \in B$

$$\mathbf{P}[A o B] = rac{1}{|A|} \sum_{\delta \in A} \sum_{\Delta \in B} P[\delta o \Delta]$$

Truncated Differential (TD) [Knudsen 94] :

Set A and B generally with structure : linear, affine spaces

Impossible Differential (ID) [Knudsen 99] :

Truncated differential distinguisher with probability 0

Multiple Differential [Blondeau Gérard 11] :

Sets A and B without structure

Multiple Differential using LLR or χ^2 [Blondeau Gérard Nyberg 12]

Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext, key and ciphertext bits

Input mask : u Output mask : v Bias: $\varepsilon = 2^{-n} \# \{ x \in \mathbb{F}_2^n | u \cdot x \oplus v \cdot y = 0 \} - \frac{1}{2}$ Correlation : $\operatorname{cor}_{x}(u, v) = 2 \cdot P_{x} [u \cdot x \oplus v \cdot E_{k}(x) = 0] - 1$ $= 2 \cdot \varepsilon$

Generalizations of Linear Cryptanalysis

Set of masks $(u, v) \in U \times V \setminus \{0, 0\}$

Capacity :

$$\mathcal{C} = \sum_{u \in U \setminus \{0\}} \sum_{v \in V \setminus \{0\}} \operatorname{cor}_x^2(u, v)$$

Multiple Linear [Biryukov et al 04] : Set *U* and *V* without structure

Multidimensional Linear (ML) [Hermelin et al 08] : Set *U* and *V* are linear or affine spaces

Zero-Correlation Linear (ZC) [Bogdanov et al 10] : (Multidimensional) linear distinguisher with capacity 0

[Chabaud Vaudenay 94] :

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$

$$\mathbf{P}[\delta \to \Delta] = 2^{-m} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^m} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

 Used to show that AB functions are APN (In general used for vector-Boolean functions)

Recent Links Between The Statistical Attacks

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers Mathematical and Structural Relation

Conclusion

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers Mathematical and Structural Relation

Conclusion

Computation

Chabaud-Vaudenay's link:

$$\mathbf{P}[\delta \xrightarrow{F} \Delta] = 2^{-n} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^n} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

Complexity: Computation of 2^{2n} correlations!!! \Rightarrow Impossible in practice

Computation

Chabaud-Vaudenay's link:

$$\mathbf{P}[\delta \xrightarrow{F} \Delta] = 2^{-n} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^n} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

Complexity: Computation of 2^{2n} correlations!!! \Rightarrow Impossible in practice

How to reduce the complexity:

- Using truncated output differences
 - \Rightarrow Reduce the sum over v
- Assuming δ of small weight \Rightarrow Reduce the sum over u

Truncated Output Difference

Setting:

- Affine space $\Delta_q \oplus \mathbb{F}_2^r$
- Let G be a projection of F

$$\mathbf{P}[\delta \xrightarrow{F} (\Delta_q \oplus \mathbb{F}_2^r)] = \mathbf{P}[\delta \xrightarrow{G} \Delta_q]$$

Truncated Output Difference

Setting:

- Affine space $\Delta_q \oplus \mathbb{F}_2^r$
- Let G be a projection of F

$$\mathbf{P}[\delta \xrightarrow{F} (\Delta_q \oplus \mathbb{F}_2^r)] = \mathbf{P}[\delta \xrightarrow{G} \Delta_q]$$

Truncated Output Difference

Setting:

- Affine space $\Delta_q \oplus \mathbb{F}_2^r$
- Let G be a projection of F

$$\mathbf{P}[\delta \xrightarrow{\mathsf{F}} (\Delta_q \oplus \mathbb{F}_2^r)] = \mathbf{P}[\delta \xrightarrow{\mathsf{G}} \Delta_q]$$

Link:

$$\mathbf{P}[\delta \stackrel{G}{\rightarrow} \Delta_q] = 2^{-q} \sum_{u \in \mathbb{F}_2^n} \sum_{\mathbf{v}_q \in \mathbb{F}_2^q} (-1)^{u \cdot \delta \oplus \mathbf{v}_q \cdot \Delta_q} \mathbf{cor}_x^2(u, \mathbf{v}_q)$$

Complexity: Computation of 2^{n+q} correlations

Assuming δ of Small Weight

Assumption: $\delta = (\delta_s, \delta_t) \in \mathbb{F}_2^s \times \mathbb{F}_2^t$ with $\delta_t = 0$

Fundamental Theorem [Nyberg 93]:

$$\sum_{u \in \mathbb{F}_2^n} (-1)^{u \cdot \delta} \mathbf{cor}_x^2(u, v_q) = \frac{2^{-t}}{\sum_{x_l \in \mathbb{F}_2^t}} \sum_{u_s \in \mathbb{F}_2^s} (-1)^{u_s \cdot \delta_s} \mathbf{cor}_{x_s}^2(u_s, v_q)$$

Assuming δ of Small Weight

Assumption: $\delta = (\delta_s, \delta_t) \in \mathbb{F}_2^s \times \mathbb{F}_2^t$ with $\delta_t = 0$

Fundamental Theorem [Nyberg 93]:

$$\sum_{u \in \mathbb{F}_2^n} (-1)^{u \cdot \delta} \mathbf{cor}_x^2(u, v_q) = \frac{2^{-t}}{\sum_{\mathbf{x}_t \in \mathbb{F}_2^t}} \sum_{u_s \in \mathbb{F}_2^s} (-1)^{u_s \cdot \delta_s} \mathbf{cor}_{\mathbf{x}_s}^2(u_s, v_q)$$

Approximation:

$$\sum_{u \in \mathbb{F}_2^n} (-1)^{u \cdot \delta} \mathbf{cor}_x^2(u, v_q) \approx \frac{1}{|\mathcal{A}|} \sum_{x_t \in \mathcal{A}} \sum_{u_s \in \mathbb{F}_2^s} (-1)^{u_s \cdot \delta_s} \mathbf{cor}_{x_s}^2(u_s, v_q)$$

Method of Computation

Estimated Truncated Differential Probability:

$$\mathbf{P}[\delta \stackrel{G}{\to} \Delta_q] \approx \frac{2^{-q}}{|\mathcal{A}|} \sum_{x_t \in \mathcal{A}} \sum_{u_s \in \mathbb{F}_2^s} \sum_{v_q \in \mathbb{F}_2^q} (-1)^{u_s \cdot \delta_s \oplus v_q \cdot \Delta_q} \mathbf{cor}_{x_s}^2 (u_s, v_q)$$

Complexity: Computation of $2^{s+q}|A|$ correlations

Accuracy: Depends on the choice of s and A

PRESENT

[Bogdanov et al 08]

- 64-bit cipher
- 80-bit (128-bit) key
- 31 rounds

Setting of Experiments on PRESENT

PRESENT:

- Single-bit linear trails are dominant
- Computation of correlations using transition matrices as for instance in [Cho 10]

Setting:

Truncated differential distribution cryptanalysis
 Using LLR statistical test [Blondeau Gérard Nyberg 12]

Truncated Differential Distribution Cryptanalysis

Experiments on PRESENT :

Link Between Statistical Attacks

35

Truncated Differential Distribution Cryptanalysis

Cryptanalysis:

On 19 rounds

Previously:

- Multiple differential cryptanalysis: 18 rounds
- Multidimensional linear cryptanalysis: 26 rounds

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers Mathematical and Structural Relation

Conclusion

[Chabaud Vaudenay 94] :

Let
$$F : \mathbb{F}_2^n \to \mathbb{F}_2^m$$

$$\mathbf{P}[\delta \to \Delta] = 2^{-m} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^m} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

[Chabaud Vaudenay 94] :

Let
$$F : \mathbb{F}_2^n \to \mathbb{F}_2^m$$

$$\mathbf{P}[\delta \to \Delta] = 2^{-m} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^m} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

Generalization [Blondeau Nyberg 14]:

• ML: $[(u_s, 0), (v_q, 0)]_{u_s \in \mathbb{F}_2^s \setminus \{0\}, v_q \in \mathbb{F}_2^q}$

• TD :
$$[(0, \delta_t), (0, \Delta_r)]_{\delta_t \in \mathbb{F}_2^t, \Delta_r \in \mathbb{F}_2^r}$$

 $\begin{array}{c}
 n \text{ bits} \\
 \overline{ \begin{array}{c} s \text{ bits} \\ 0 \end{array}} & \overline{ \begin{array}{c} t \text{ bits} \\ \delta_t \end{array}} \\
 U_s & 0 \\
 U_s & 0 \\
 V_q & 0 \\
 \underline{ \begin{array}{c} 0 \\ V_q \end{array}} & \underline{ \begin{array}{c} \Delta_r \\ r \text{ bits} \end{array}} \\
 n \text{ bits} \end{array}}$

with capacity C

with probability p

[Chabaud Vaudenay 94] :

Let
$$F : \mathbb{F}_2^n \to \mathbb{F}_2^m$$

$$\mathbf{P}[\delta \to \Delta] = 2^{-m} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^m} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

Generalization [Blondeau Nyberg 14]:

 $\blacktriangleright \mathsf{ML} : [(u_s, 0), (v_q, 0)]_{u_s \in \mathbb{F}_2^s \setminus \{0\}, v_q \in \mathbb{F}_2^q}$

• TD :
$$[(0, \delta_t), (0, \Delta_r)]_{\delta_t \in \mathbb{F}_2^t, \Delta_r \in \mathbb{F}_2^r}$$

with capacity C with probability p

 $p=2^{-q}(C+1)$

Link Between Statistical Attacks

n bits

t bits

0

s bits

Us

Va

0 *q* bits

[Chabaud Vaudenay 94] :

Let
$$F : \mathbb{F}_2^n \to \mathbb{F}_2^m$$

$$\mathbf{P}[\delta \to \Delta] = 2^{-m} \sum_{u \in \mathbb{F}_2^n} \sum_{v \in \mathbb{F}_2^m} (-1)^{u \cdot \delta \oplus v \cdot \Delta} \mathbf{cor}_x^2(u, v)$$

Generalization [Blondeau Nyberg 14]:

• ML : $[(u_s, 0), (v_q, 0)]_{u_s \in \mathbb{F}_2^s \setminus \{0\}, v_q \in \mathbb{F}_2^q}$

• TD :
$$[(0, \delta_t), (0, \Delta_r)]_{\delta_t \in \mathbb{F}_2^t, \Delta_r \in \mathbb{F}_2^r}$$

with capacity C with probability p

$p = 2^{-q}(C+1)$

- TD is a chosen plaintext (CP) attack
- ML is a known plaintext (KP) attack

[Selçuk 07] $P_S = 50\%$ and $\varphi_a = \Phi^{-1}(1 - 2^{-a})$, with *a* the advantage

Multidimensional Linear :

Truncated Differential :

$$\mathcal{N}^{TD} = rac{2^{-q+1}}{M \cdot (p-2^{-q})^2} \cdot arphi_a^2,$$

where *M* is the size of a structure (usually $M = 2^t$)

[Selçuk 07] $P_S = 50\%$ and $\varphi_a = \Phi^{-1}(1 - 2^{-a})$, with *a* the advantage

Multidimensional Linear :

$$N^{ML} = rac{2^{(s+q+1)/2}}{C} \cdot \varphi_{a}$$

Truncated Differential :

$$N^{TD} = rac{2^{-q+1}}{M \cdot (p-2^{-q})^2} \cdot arphi_a^2,$$

where *M* is the size of a structure (usually $M = 2^t$)

► For
$$p = 2^{-q}(C+1)$$
:
 $N^{TD} = \frac{2^{q+1}}{2^t \cdot C^2} \cdot \varphi_a^2$

[Selçuk 07] $P_S = 50\%$ and $\varphi_a = \Phi^{-1}(1 - 2^{-a})$, with *a* the advantage

[Selçuk 07] $P_S = 50\%$ and $\varphi_a = \Phi^{-1}(1 - 2^{-a})$, with *a* the advantage

$$N^{ML} = \frac{2^{(s+q+1)/2}}{C} \cdot \varphi_a$$
For $p = 2^{-q}(C+1)$:
$$N^{TD} = \frac{2^{q+1}}{2^t \cdot C^2} \cdot \varphi_a^2$$

$$N^{TD} = \frac{1}{2^n} \cdot (N^{ML})^2$$

Link Between Statistical Attacks

and the Second

[Selçuk 07] $P_S = 50\%$ and $\varphi_a = \Phi^{-1}(1 - 2^{-a})$, with *a* the advantage

$$N^{ML} = \frac{2^{(s+q+1)/2}}{C} \cdot \varphi_a$$
For $p = 2^{-q}(C+1)$:
$$N^{TD} = \frac{2^{q+1}}{2^t \cdot C^2} \cdot \varphi_a^2$$

$$N^{TD} = \frac{1}{2^n} \cdot (N^{ML})^2$$

 $N^{TD} \leq N^{ML}$ with equality when using the full codebook

Link Between Statistical Attacks

and the Second

Truncated Differential Distinguisher

M : size of a structure S : number of structures

$$N^{TD} = S \cdot M$$

for *S* values of $x_s \in \mathbb{F}_2^s$ do Create a table *T* of size *M* for *M* values of $x_t \in \mathbb{F}_2^t$ do $(y_q, y_r) = E((x_s, x_t))$ $T[x_t] = y_q$ for all pairs (x_t, x_t') do

if $(T[x_t] \oplus T[x'_t]) == 0$ then D+=1 For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which have no difference on the q bits

D=0

Truncated Differential Distinguisher

Time Complexity : Verifying all pairs $\label{eq:Time} Time \approx S \cdot M^2/2$

Memory Complexity : Storing all ciphertexts inside a structure Memory $\approx M$

 $\begin{array}{l} D=0\\ \text{for }S \text{ values of } x_s\in \mathbb{F}_2^s \text{ do}\\ \text{ Create a table }T \text{ of size }M\\ \text{ for }M \text{ values of } x_t\in \mathbb{F}_2^t \text{ do}\\ (y_q,y_r)=E((x_s,x_t))\\ T[x_t]=y_q\\ \text{ for all pairs }(x_t,x_t') \text{ do}\\ \text{ if }(T[x_t]\oplus T[x_t'])==0 \text{ then}\\ D+=1 \end{array}$

For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which have no difference on the q bits

Multidimensional Linear Distinguisher

Set a counter *D* to 0 Create a table *T* of size 2^{q+s} for N^{ML} plaintexts do $(y_q, y_r) = E((x_s, x_t))$ $T[(x_s, y_q)] += 1$ for all (x_s, y_q) do $D += (T[(x_s, y_q)] - N/2^{q+s})^2$

For N^{ML} plaintexts Count the number of occurrences of each pair (x_s, y_q) Compute the statistic

Multidimensional Linear Distinguisher

Time Complexity : Reading all messages Time $\approx N^{ML}$

Memory Complexity : Storing the number of occurrences of $(x_s^i, y_a^j)_{i,i}$ *Memory* $\approx 2^{s+q}$

Set a counter D to 0 Create a table T of size 2^{q+s} for N^{ML} plaintexts do $(y_a, y_r) = E((x_s, x_t))$ $T[(x_s, y_a)] += 1$ all (x_s, y_q) do $D += (T[(x_s, y_q)] - N/2^{q+s})^2$ for all (x_s, y_q) do

For *N^{ML}* plaintexts Count the number of occurrences of each pair (x_s, y_q) Compute the statistic
Complexities of TD and ML Attacks

ML distinguisher :

$$Data = N^{ML}$$

Time $pprox N^{ML}$
Memory $pprox 2^{s+q}$

► TD distinguisher : $Data = N^{TD} = S \cdot 2^{t} < N^{ML}$ $Time \approx N^{TD} \cdot 2^{t-1}$

Memory $\approx 2^t$

Question : Can we decrease the time complexity of a TD attack?

TD with Less Time Complexity

 Dominant part: Verifying the output difference for each pair of ciphertexts

Example :

- ▶ 4 ciphertexts : (y₁, b₁) (y₂, b₂) (y₁, b₃) (y₃, b₄)
 1 pair with equal y_i
- Previous algorithm : 6 comparisons

TD with Less Time Complexity

 Dominant part: Verifying the output difference for each pair of ciphertexts

Example :

- ▶ 4 ciphertexts : (y₁, b₁) (y₂, b₂) (y₁, b₃) (y₃, b₄)
 1 pair with equal y_i
- Previous algorithm : 6 comparisons

Improved Version :

Count the occurrences of each y_i:

and compute $D = \sum_i T[y_i](T[y_i] - 1)/2 = 1$

TD with Less Time Complexity

D = 0for *S* values of $x_s \in \mathbb{F}_2^s$ do Create a table *T* of size 2^{*q*} for *M* values of $x_t \in \mathbb{F}_2^t$ do $(y_q, y_r) = E((x_s, x_t))$ $T[y_q] += 1$ for all $y_q \in \mathbb{F}_2^q$ do $D += T[y_q](T[y_q] - 1)/2$

For S structures

For all elements in a structure

Count the number of occurrences of the partial ciphertexts

Compute the statistic

$$egin{aligned} \mathsf{Data} &= \mathsf{N}^{\mathsf{TD}} = \mathcal{S} \cdot \mathcal{M} < \mathsf{N}^{\mathsf{ML}} \ && \mathsf{Time} &\approx \mathsf{max}(\mathsf{N}^{\mathsf{TD}}, \mathcal{S} \cdot 2^q) \ && \mathsf{Memory} &pprox 2^q \end{aligned}$$

KP ML and CP TD Attacks : An Example on PRESENT [Cho 10] :

- ML distinguisher on 24 rounds
- KP ML attack on 26 rounds (inversion of the first and last round)

First round : (In Cho's ML characteristic)

► KP ML ⇒ Guess 16-key bits

KP ML and CP TD Attacks : An Example on PRESENT [Cho 10] :

- ML distinguisher on 24 rounds
- KP ML attack on 26 rounds (inversion of the first and last round)
- First round : (In Cho's ML characteristic)

- KP ML \Rightarrow Guess 16-key bits
- Using the link between TD and ML
 - CP TD \Rightarrow Guess 4, 8, 12, 16-key bits

Example of CP TD Attack on 24 Rounds of PRESENT

Data Complexity (Data) :

- The *Data* of a KP ML is proportional to $\varphi_a = \Phi^{-1}(1 2^{-a})$
- The Data of a CP TD is proportional to φ_a^2
- Depending of the size of the fixation, the data complexity of a CP ML attack can be smaller than for a KP ML attack

Example of CP TD Attack on 24 Rounds of PRESENT

Fixing 4 bits :

Model	а	Data	Memory	Time ₁	Time ₂
CP TD	10	2 ^{54.75}	2 ²⁹	2 ^{54.75}	2 ⁷⁰
KP ML	5	2 ^{57.14}	2 ³²	2 ^{57.14}	2 ⁷⁵

*Time*₁: Complexity of the distillation phase *Time*₂: Complexity of the search phase

 Data, time and memory complexities of the CP TD attack are smaller than those of a KP ML attack

Example of CP TD Attack on 26 Rounds of PRESENT

- A CP TD attack on 26 rounds of PRESENT with less memory than the KP ML attack
- The previous differential-type attack was on 19 rounds

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack

The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers Mathematical and Structural Relation

Conclusion

Statistical Saturation (SS) Attack [Collard Standaert 09]

Idea :

- "Dual" of the saturation attack
- Takes advantage of several plaintexts with some fixed bits while the others vary randomly
- We observe the diffusion of the fixed bits during the encryption process

Application on PRESENT [Bogdanov et al 08] :

- Distinguisher on 20 / 21 rounds
- Key-recovery on 24 rounds

Statistical Saturation Distinguisher

 $\begin{array}{l} D=0\\ \text{for }S \text{ values of } x_s \in \mathbb{F}_2^s \text{ do}\\ \text{Create a table }T \text{ of size } 2^q\\ \text{for }M \text{ values of } x_t \in \mathbb{F}_2^t \text{ do}\\ (y_q, y_r) = E((x_s, x_t))\\ T[y_q]+=1\\ \text{for all } y_q \in \mathbb{F}_2^q \text{ do}\\ D+=T[y_q](T[y_q]-1)/2 \end{array}$

For S structures

For all elements in a structure

Count the number of occurrences of the partial ciphertexts

Compute the statistic

This distinguisher is the same as the improved truncated differential distinguisher

Link [Leander 11] :

For a fixed $x_s \in \mathbb{F}_2^s$, we denote by $C(x_s)$ the capacity of the distribution of y_q :

$$C = 2^{-s} \sum_{x_s \in \mathbb{F}_2^s} C(x_s)$$

Link [Leander 11] :

For a fixed $x_s \in \mathbb{F}_2^s$, we denote by $C(x_s)$ the capacity of the distribution of y_q :

$$C = 2^{-s} \sum_{x_s \in \mathbb{F}_2^s} C(x_s)$$

SS attacks link mathematically with ML attacks

Link [Leander 11] :

For a fixed $x_s \in \mathbb{F}_2^s$, we denote by $C(x_s)$ the capacity of the distribution of y_q :

$$C=2^{-s}\sum_{x_s\in\mathbb{F}_2^s}C(x_s)$$

SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack ML is a known plaintext (KP) attack

Link [Leander 11] :

For a fixed $x_s \in \mathbb{F}_2^s$, we denote by $C(x_s)$ the capacity of the distribution of y_q :

$$C=2^{-s}\sum_{x_s\in\mathbb{F}_2^s}C(x_s)$$

SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack ML is a known plaintext (KP) attack

SS attacks link algorithmically with TD attacks

On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 4 rounds with $M = 2^{32}$

[Collard Standaert 09] Data increases linearly [Leander 11] Estimate of the capacity C [Our work] Data is $N = \frac{2^{q+1}}{M \cdot C^2} \cdot \varphi_a^2$

On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 4 rounds with $M = 2^{32}$

- The attack has been verified experimentally [Kerckhof et al 11]
- Our estimate match with the experiments (N around 2⁵¹ for 19 rounds)

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers

Mathematical and Structural Relation

Conclusion

Mathematical Relation between ID and ZC

[Blondeau Nyberg 2013]

- $\succ \mathsf{TD} : [(0, \Delta_t), (0, \Gamma_r)]_{\Delta_t \in \mathbb{F}_2^t \setminus \{0\}, \ \Gamma_r \in \mathbb{F}_2^r}$
- $\blacktriangleright \mathsf{ML} : [(U_s, 0), (V_q, 0)]_{U_s \in \mathbb{F}_2^s \setminus \{0\}, V_q \in \mathbb{F}_2^q}$

with probability *p* with capacity *C*

$$\frac{2^t - 1}{2^t} \cdot p = 2^{-q} \cdot (C + 1) - 2^{-t}$$

If t = q: ZC and ID distinguishers are mathematically equivalent

Mathematical Relation between ID and ZC

[Blondeau Nyberg 2013]

If t = q: ZC and ID distinguishers are mathematically equivalent Observation :

Independent of the cipher and its structure

However: $(2^t - 1)(2^{n-t} - 1) \approx 2^n$ IDs are involved

In practice, the considered spaces are smaller

ID and ZC Distinguishers

Number of Rounds of the Distinguisher:

Ciphers	ID	ZC
LBlock / TWINE	14	14
MARS	11	11
SMS4	11	11
Skipjack	24	17
Skipjack (only rule A)	16	16
Four-Cell	18	12

ID and ZC Distinguishers

Number of Rounds of the Distinguisher:

Ciphers	ID	ZC
LBlock / TWINE	14	14
MARS	11	11
SMS4	11	11
Skipjack	24	17
Skipjack (only rule A)	16	16
Four-Cell	18	12

Example of Patterns (for LBlock) :

- Impossible differential :
 - $(0000000,00 \triangle 00000) \nrightarrow (0 \Gamma 000000,00000000)$
- ► Zero correlation approximation : (000 U0000, 0000000) → (00000000, 0 V000000)

Example of Constructions

- F-layer
- X-layer
- P-layer

Rules to find ZC and ID distinguishers

Differential Context :

Linear Context :

Rules to find ZC and ID distinguishers

Differential Context :

Linear Context :

⊕ and • "play orthogonal roles"

Mirror Round Function

- \mathcal{M} is the matrix representation of the mirror round function
- In general $\mathcal{M}^T \neq \mathcal{R}$
- Used to find ZC distinguishers [Soleimany Nyberg 2013]

Example of ID distinguisher

Example of ZC distinguisher

Matrix Method

Impossible Differential Context :

- Truncated input difference Δ
- Truncated output difference F
- ► If there is an inconsistency between $\mathcal{R}^m \cdot \Delta$ and $\mathcal{R}^{-\ell} \cdot \Gamma$, we have an ID distinguisher on $m + \ell$ rounds

Zero-Correlation Context :

- Truncated input mask U
- Truncated output mask V
- ▶ If there is an inconsistency between $\mathcal{M}^m \cdot U$ and $\mathcal{M}^{-\ell} \cdot V$, we have a ZC distinguisher on $m + \ell$ rounds

Equivalence between ID and ZC distinguishers

If it exists a linear relation between \mathcal{M} and \mathcal{R} or \mathcal{R}^{-1} , the existence of an ID distinguisher involving M differentials is equivalent to the existence of a ZC distinguisher involving Mlinear masks.

Given $\ensuremath{\mathcal{Q}}$ a permutation matrix, the relation is

• Feistel-type ($\mathcal{R} = \mathcal{P} \cdot \mathcal{F}$) :

$$\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1}$$
 or $\mathcal{R} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$

• Skipjack-type ($\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$) :

 $\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1} \text{ or } \mathcal{F} \cdot \mathcal{P} \cdot \mathcal{X} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$

• EGFN-type (
$$\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$$
) :

$$\mathcal{R} = \mathcal{Q} \cdot \mathcal{M} \cdot \mathcal{Q}^{-1}$$
 or $\mathcal{R} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$ or $\mathcal{F} \cdot \mathcal{P} \cdot \mathcal{X} = \mathcal{Q} \cdot \mathcal{M}^{-1} \cdot \mathcal{Q}^{-1}$

Illustration of the Proof for a Type-I Feistel

Inverse function

Illustration of the Proof for a Type-I Feistel

 $(\alpha, \beta, \delta, \gamma) \rightarrow (\alpha, \delta, \gamma, \beta)$

Illustration of the Proof for a Type-I Feistel

Round function

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Round function

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Inverse function

$$\begin{split} \mathcal{R}^{-1} &= \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1} \\ &= \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1} \end{split}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

Round function

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Exchange the order of the operations

Inverse function

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

Round function

 $\mathcal{R}=\mathcal{P}\cdot\mathcal{X}\cdot\mathcal{F}$

Exchange the order of the operations

Inverse function

$$\begin{split} \mathcal{R}^{-1} &= \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1} \\ &= \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1} \end{split}$$

Equivalent formulation

 $\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

Bound function

 $\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$

Exchange the order of the operations

 $\mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1}$

Inverse function

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

 $\mathcal{R}^{-1} = \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1}$ $\mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1} \cdot \mathcal{X}_*^{-1}$

Equivalent formulation Permutation of the branches

 $\mathcal{P}^{-1} \cdot (\mathcal{P} \cdot \mathcal{X}^{-1}_* \cdot \mathcal{P}^{-1}) \cdot \mathcal{F}^{-1}_*$

Bound function

 $\mathcal{R} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{F}$

Exchange the order of the operations

Inverse function

$$\mathcal{F}_*^{-1} = \mathcal{P} \cdot \mathcal{F} \cdot \mathcal{P}^{-1}$$

$$\mathcal{X}_*^{-1} = \mathcal{P} \cdot \mathcal{X} \cdot \mathcal{P}^{-1}$$

 $\mathcal{R}^{-1} = \mathcal{F}^{-1} \cdot \mathcal{X}^{-1} \cdot \mathcal{P}^{-1}$ $= \mathcal{P}^{-1} \cdot \mathcal{F}_{*}^{-1} \cdot \mathcal{X}_{*}^{-1}$

Equivalent formulation Permutation of the branches

 $\mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1} \cdot \mathcal{F}_*^{-1}$

 $\mathcal{P}^{-1} \cdot (\mathcal{P} \cdot \mathcal{X}_*^{-1} \cdot \mathcal{P}^{-1}) \cdot \mathcal{F}_*^{-1}$

The inverse function is "equivalent" to the mirror function

Example of Equivalence

Round Function of the Twine Block Cipher:

 ${\mathcal P}$ defined from

 $\pi = \{5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14\}$

We have $\mathcal{M} = \mathcal{Q} \cdot \mathcal{R} \cdot \mathcal{Q}^{-1}$ for \mathcal{Q} defined from

 $\gamma = \{ \texttt{16}, \texttt{15}, \texttt{12}, \texttt{11}, \texttt{14}, \texttt{13}, \texttt{10}, \texttt{9}, \texttt{8}, \texttt{7}, \texttt{4}, \texttt{3}, \texttt{6}, \texttt{5}, \texttt{2}, \texttt{1} \}$

Example of Inequivalence

Some of the Feistels of [Suzaki et al 2010]

For instance
$$\mathcal{R} = \mathcal{P} \cdot \mathcal{F}$$
 with $\mathcal{F} =$

and \mathcal{P} is defined from

 $\pi = \{1, 2, 9, 4, 11, 6, 7, 8, 5, 12, 13, 10, 3, 0\}$

- The original Skipjack (ID: 24 rounds, ZC: 17 rounds)
 - Rule-B followed by Rule-A is equivalent to

Outline

Computing Differential Probabilities using Linear Correlations Improving the Estimate of Differential Probability

Link between the TD and ML Key-Recovery Attacks Data/Time/Memory Trade-offs

Statistical Saturation (SS) Attack The SS Attack is a Truncated Differential Attack

Relation between ID and ZC Distinguishers Mathematical and Structural Relation

Conclusion

Differential-Linear Cryptanalysis

[Langford and Hellman 94] [Biham et al 02]

 $\blacktriangleright E = E_0 \circ E_1$

- A truncated differential on E₀
- A linear approximation on E₁

In [Blondeau Leander Nyberg 14]:

- We analyze the model.
- We generalize it to the case of multiple linear approximations and multiple input differences.
- We show that a differential-linear attack is a truncated differential attack.

Integral distinguishers and ZC distinguishers

The link of [Bogdanov et al 12]:

Let $F : \mathbb{F}_2^{\alpha} \times \mathbb{F}_2^{\beta} \to \mathbb{F}_2^{\gamma} \times \mathbb{F}_2^{\delta}$ a cipher with $H(x, y) = (H_1(x, y), H_2(x, y))$. If the input and output linear masks *u* and *v* are

If the input and output linear masks u and v are independent, the approximation $\langle v, H(x) \rangle \oplus \langle u, x \rangle$ has correlation zero for any $u = (u_1, 0)$, and any $v = (v_1, 0) \neq 0$ (ZC distinguisher) if and only if the function $H_1(\lambda, y)$ is balanced for any λ (ZC integral distinguisher).

A ZC distinguisher with independent masks on *r* rounds \Rightarrow an integral distinguisher on $r' \ge r$ rounds

An integral distinguisher on *r* rounds with balanced output set \Rightarrow a ZC distinguisher on *r* rounds with independent masks

Conclusion

- Some strong relations between statistical attacks have been identified in the last 3 years
- Nevertheless some questions remain regarding the links with some other statistical attacks
- Based on these relations we wonder if we can simplify the security analysis of a symmetric cryptographic primitive

