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Block Cipher

Block cipher :

EK : Fn
2 → Fn

2
x 7→ y

Iterative block cipher :

- - - - -x yFK1 FK2 FKr FKr+1
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Block cipher : SPN Example
PRESENT [BKL+07]cccc cccc cccc cccc
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Round function F :
I Key addition
I Linear layer
I Non-linear layer
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Differential Cryptanalysis [Biham Shamir 90]
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Differential : pair of input and output difference (a,b)

Differential probability : p = PX,K[ EK (X )⊕ EK (X ⊕ a) = b ]
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Computing Differential Probabilities
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Differential trail :

Sequence of all intermediate differences

(β0, β1, · · ·βr )

Probability of a differential trail :

Assuming a Markov cipher and independent
round-key, we have

P [(β0, β1, · · ·βr )] =
∏
i<r

P[βi → βi+1]
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Computing Differential Probabilities
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If p significantly larger than the
uniform probability pU ,
we have a distinguisher,
which can often be converted to a
key-recovery attack

Expected differential probability :

Sum of the probability of trails with input
difference a and output difference b

p = P [ a→ b ] =
∑
β

P [(a, β1, · · ·βr−1,b)]
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Truncated Differential [Knudsen 94]
Truncated differential : pair (A,B) where

A ⊂ Fn
2 \ {0} is a set of input differences,

B ⊂ Fn
2 \ {0} is a set of output differences

∑
b∈Fn

2

P[a→ b] = 1 and
∑
a∈Fn

2

∑
b∈Fn

2

P[a→ b] = 2n

Expected probability of the truncated differential (A,B) :

p = P[A→ B] =
1
|A|

∑
a∈A

∑
b∈B

P[a→ b]

Probability is averaged over the input differences
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Complexity of a Distinguishing Attack

Expected probability : p = P[A→ B]

Uniform probability : pU =
|B|

2n − 1
≈ |B|

2n

Assume p is close to pU : p = pU + ε, with ε > 0

Data complexity : Number of plaintexts required to distinguish
the cipher E from a random permutation

N = γ · pU

(pU − p)2 = γ · pU

ε2 ,

where γ depends of |A|, the false-alarm and non-detection error
probabilities [Selçuk 07], [Blondeau et al 09]
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Impossible differential [Knudsen 98]

Impossible differential :

Truncated differential (B,C) with probability p = P[B → C] = 0

Distinguisher :

Based on a mismatch between two
deterministic truncated differentials

B

?

D1
6=
D2
6

C

p = 1

p = 1
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Improbable Differential Distinguisher
Improbable differential :

Truncated differential (A,C) with p < pU

Assume p close to pU : p = pU + ε with ε < 0

Data complexity : (as in the truncated case)

N = γ · pU

ε2

Example : [Borst et al 97] and [Knudsen et al 99]

But : Difficulty of finding distinguishers

Idea : [Tezcan 10] and [Mala et al 10]
To derive improbable distinguishers from impossible ones
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Improbable from Impossible
Distinguisher on E is derived from :

I a truncated differential (A,B) over E0,
I an impossible differential (B,C) over E1

A

?
B

?
C

q

0

?

?

E0

E1
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Improbable from Impossible
Distinguisher on E is derived from :

I a truncated differential (A,B) over E0,
I an impossible differential (B,C) over E1
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I D = (Fn
2)
∗ \ B ,

|C|
|D|
≤ 1
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I a truncated differential (A,B) over E0,
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I If P[A→ B] = q then P[A→ D] = 1− q

I If P[B → C] = 0 then P[D → C] =
|C|
|D|
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Improbable from Impossible
Distinguisher on E is derived from :

I a truncated differential (A,B) over E0,
I an impossible differential (B,C) over E1
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I D = (Fn
2)
∗ \ B ,

|C|
|D|
≤ 1

I If P[A→ B] = q then P[A→ D] = 1− q

I If P[B → C] = 0 then P[D → C] =
|C|
|D|

Claim :
P[A→ C] = P[A→ D] · P[D → C] = (1− q) · |C|

|D|
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Improbable from Impossible

Uniform probability :

pU =
|C|
2n

Claim :
P[A→ C] = (1− q) · |C|

|D|

Often |D| ≈ 2n and as in [Tezcan 10], it is assumed that :

P[A→ C] ≈ (1− q) · pU = pU + ε,

with ε = −q · pU < 0
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Analyzing the Model

For differential distinguishers :
I To compute the probability of a differential trail

I Markov assumption is assumed correct when averaging
over the keys

I If we do not sum over all trails, we get
I an underestimate of the probability
I and an overestimate of data complexity N

For such improbable differential distinguishers :

I What is happening in practice? and why?

We denote by pE the experimental probability
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Example 1
I 24-bit generalized Feistel

Round function
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Z

(((((((((((((((((((((((((

S S S- - -- - -c c c? ? ?c c cK1 K2 K3

Improbable distinguisher

A : X Y 0 0 0 0

1 round ⇐ q = 2−3.91

B : 0 X 0 0 0 0

10 rounds ⇐ Impossible

C : 0 0 0 Z 0 0
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Improbable distinguisher

A : X Y 0 0 0 0

1 round ⇐ q = 2−3.91

B : 0 X 0 0 0 0

10 rounds ⇐ Impossible

C : 0 0 0 Z 0 0

p pE pU

2−20.10 2−19.94 2−20

X ,Y ∈ {0x1, ..., 0xF}

In this case :

pE > p and even pE > pU

The differential is not improbable!!!
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Improbable Differential on PRESENT

[Tezcan 13] : Notion of “undisturbed bits” to find
impossible distinguishers on SPN ciphers

Improbable distinguishers on reduced-round PRESENT :
IA : 3 rounds truncated + 6 rounds impossible (unpublished)
I B : 5 rounds truncated + 5 rounds impossible [Tezcan 13]

Experiments :
I On 3 rounds truncated + 5 rounds impossible of A :

q = 2−12 pU = 2−13
p ≤ pU ≤ pE

p = 2−13.00035 pE = 2−12.97
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Experiments on PRESENT
I On 1 round truncated + 4 rounds impossible of B :

q = 2−4 pU = 2−13.20
pE close to p

p = 2−13.29 pE = 2−13.31

I On 1 round truncated + 5 rounds impossible of B :

q = 2−4 pU = 2−16 pE ≤ p ≤ pU

p = 2−16.09 pE = 2−16.49 All pE ≤ 2−16.34

I On 2 rounds truncated + 5 rounds impossible of B :

q = 2−8 pU = 2−16
pE close to p

p = 2−16.006 pE = 2−16.0073
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Conclusion on the Experiments

Observation :
I The experimental probabilities can be different from the

expected ones
I We can find under/over-estimate

Question :
I Can we safely multiply truncated differential probabilities?

I For simplicity, in the following explanation, the role of the
key is omitted
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Multiplying Truncated Differential Probability 1/2

p = P[A E→ C] =
1
|A|

∑
a∈A

PX,K [EK (X )⊕ EK (X ⊕ a) ∈ C]

Description :

I E = E1 ◦ E0,
I a truncated differential (A,D) over E0,
I a truncated differential (D,C) over E1

Is it true that P[A E→ C] = P[A
E0→ D] · P[D E1→ C] ?

In general : NO
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Multiplying Truncated Differential Probability 2/2

p =
1
|A|

∑
a∈A

∑
c∈C

P[a E→ c]

≥ 1
|A|

∑
a∈A

∑
d∈D

∑
c∈C

P[a
E0→ d ] · P[d E1→ c]

Assuming that ∀d ∈ D, P[d E17→ C] are equal1, we obtain

p ≥ |C|
|D|

1
|a|

∑
a∈A

∑
d∈D

P[a
E0→ d ]

≥ P[A
E0→ D] · P[D E1→ C]

1Assumption can be done for the other part of the cipher
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Explanation Continue by Hand...
I What happens if the assumption is not satisfied?

Example |D = 2|
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Explanation Continue by Hand...
I What happens if the assumption is not satisfied?

Example |D = 2|
PPPPPPPPPP[A → d ]

P[d → C]
1/16 3/16

2/16 2/256 -
6/16 - 18/256

P[A→ D] · P[D → C] = (
2
16

+
6
16

)× 1
2
(

1
16

+
3

16
) =

16
256

≤∑
d P[A→ d ] · P[d → C] =

2
256

+
18

256
=

20
256
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Explanation Continue by Hand...
I What happens if the assumption is not satisfied?

Example |D = 2|
PPPPPPPPPP[A → d ]

P[d → C]
1/16 3/16

6/16 6/256 -
2/16 - 06/256

P[A→ D] · P[D → C] = (
2
16

+
6
16

)× 1
2
(

1
16

+
3

16
) =

16
256

≥∑
d P[A→ d ] · P[d → C] =

6
256

+
6

256
=

12
256
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Explanation Continue by Hand...
I What happens if the assumption is not satisfied?

Example |D = 2| (same probabilities)
PPPPPPPPPP[A → d ]

P[d → C]
2/16 2/16

2/16 4/256 -
6/16 - 12/256

P[A→ D] · P[D → C] = (
2
16

+
6
16

)× 1
2
(

2
16

+
2

16
) =

16
256

=∑
d P[A→ d ] · P[d → C] =

4
256

+
12

256
=

16
256
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Summary of the Explanation
p ≥ 1

|A|
∑
a∈A

∑
d∈D

∑
c∈C

P[a
E0→ d ] · P[d E1→ c]

Assuming that ∀d ∈ D, P[d E1→ C] or P[A
E0→ d ] are equal,

p ≥ P[A
E0→ D] · P[D E1→ C]
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P[a
E0→ d ] · P[d E1→ c]

Assuming that ∀d ∈ D, P[d E1→ C] or P[A
E0→ d ] are equal,

p ≥ P[A
E0→ D] · P[D E1→ C]

For truncated distinguisher :

We do not know if
P[A

E0→ D] · P[D E1→ C]

is an under/over-estimate of

1
|A|

∑
a∈A

∑
d∈D

∑
c∈C

P[a
E0→ d ] · P[d E1→ c]
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Summary of the Explanation
p =

1
|A|

∑
a∈A

∑
d∈D

∑
c∈C

P[a
E0→ d ] · P[d E1→ c]

Assuming that ∀d ∈ D, P[d E1→ C] or P[A
E0→ d ] are equal,

p = P[A
E0→ D] · P[D E1→ C]

For improbable distinguisher :

I “≥” is “=”

I |D| is close to 2n

I P[A
E0→ D] · P[D E1→ C] is not an under/over-estimate of P[A E→ C]
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Conclusion

I Improbable differential can be used for cryptanalytic
purposes

I Tezcan and Mala et al proposed to derive improbable
distinguishers from impossible ones

I We show based on experiments that the model is not
completely correct
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