

Improbable Differential from Impossible Differential : On the Validity of the Model

Céline Blondeau

Aalto University, Finland

Indocrypt 2013, Mumbai

Outline

Differential Cryptanalysis

Differential Cryptanalysis Truncated Differential Cryptanalysis Impossible Differential Cryptanalysis

Improbable Differential Cryptanalysis

Improbable Distinguisher Improbable Distinguisher from Impossible Distinguisher Experiments on PRESENT Multiplying Truncated Differential Probabilities

Outline

Differential Cryptanalysis

Differential Cryptanalysis Truncated Differential Cryptanalysis Impossible Differential Cryptanalysis

Improbable Differential Cryptanalysis

Improbable Distinguisher Improbable Distinguisher from Impossible Distinguisher Experiments on PRESENT Multiplying Truncated Differential Probabilities

Block Cipher

Block cipher :

$$\begin{array}{rcccc} E_{\mathcal{K}} & : & \mathbb{F}_2^n & \to & \mathbb{F}_2^n \\ & & x & \mapsto & y \end{array}$$

Iterative block cipher :

Block cipher : SPN Example

Round function F:

- Key addition
- Linear layer
- Non-linear layer

Differential Cryptanalysis [Biham Shamir 90]

Differential : pair of input and output difference (a, b)Differential probability : $p = P_{X,K}[E_K(X) \oplus E_K(X \oplus a) = b]$

Computing Differential Probabilities

Differential trail :

Sequence of all intermediate differences

 $(\beta_0, \beta_1, \cdots \beta_r)$

Probability of a differential trail :

Assuming a Markov cipher and independent round-key, we have

$$P[(\beta_0,\beta_1,\cdots\beta_r)] = \prod_{i< r} P[\beta_i \rightarrow \beta_{i+1}]$$

Computing Differential Probabilities

Expected differential probability :

Sum of the probability of trails with input difference a and output difference b

$$p = P[a \rightarrow b] = \sum_{\beta} P[(a, \beta_1, \cdots, \beta_{r-1}, b)]$$

If *p* significantly larger than the uniform probability p_U , we have a distinguisher, which can often be converted to a key-recovery attack

Truncated Differential [Knudsen 94]

Truncated differential : pair (A, B) where

 $\begin{array}{l} \pmb{A} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of input differences,} \\ \pmb{B} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of output differences} \end{array}$

Truncated Differential [Knudsen 94]

Truncated differential : pair (A, B) where

 $\begin{array}{l} \pmb{A} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of input differences,} \\ \pmb{B} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of output differences} \end{array}$

$$\sum_{b \in \mathbb{F}_2^n} P[a \to b] = 1 \text{ and } \sum_{a \in \mathbb{F}_2^n} \sum_{b \in \mathbb{F}_2^n} P[a \to b] = 2^n$$

Truncated Differential [Knudsen 94]

Truncated differential : pair (A, B) where

 $\begin{array}{l} \pmb{A} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of input differences,} \\ \pmb{B} \subset \mathbb{F}_2^n \setminus \{0\} \text{ is a set of output differences} \end{array}$

$$\sum_{\boldsymbol{b} \in \mathbb{F}_2^n} P[\boldsymbol{a} \to \boldsymbol{b}] = 1 \text{ and } \sum_{\boldsymbol{a} \in \mathbb{F}_2^n} \sum_{\boldsymbol{b} \in \mathbb{F}_2^n} P[\boldsymbol{a} \to \boldsymbol{b}] = 2^n$$

Expected probability of the truncated differential (A, B):

$$p = P[A \rightarrow B] = \frac{1}{|A|} \sum_{a \in A} \sum_{b \in B} P[a \rightarrow b]$$

Probability is averaged over the input differences

Complexity of a Distinguishing Attack

Expected probability : $\rho = P[A \rightarrow B]$

Uniform probability : $p_U = \frac{|B|}{2^n - 1} \approx \frac{|B|}{2^n}$

Assume p is close to p_U : $p = p_U + \varepsilon$, with $\varepsilon > 0$

Data complexity : Number of plaintexts required to distinguish the cipher *E* from a random permutation

$$N = \gamma \cdot \frac{p_U}{(p_U - p)^2} = \gamma \cdot \frac{p_U}{\varepsilon^2},$$

where γ depends of |A|, the false-alarm and non-detection error probabilities [Selçuk 07], [Blondeau et al 09]

Impossible differential [Knudsen 98]

Impossible differential :

Truncated differential (B, C) with probability $p = P[B \rightarrow C] = 0$

Distinguisher :

Based on a mismatch between two deterministic truncated differentials

Impossible differential [Knudsen 98]

Impossible differential :

Truncated differential (B, C) with probability $p = P[B \rightarrow C] = 0$

Distinguisher :

Based on a mismatch between two deterministic truncated differentials

Outline

Differential Cryptanalysis

Differential Cryptanalysis Truncated Differential Cryptanalysis Impossible Differential Cryptanalysis

Improbable Differential Cryptanalysis

Improbable Distinguisher Improbable Distinguisher from Impossible Distinguisher Experiments on PRESENT Multiplying Truncated Differential Probabilities

Improbable Differential Distinguisher

Improbable differential :

Truncated differential (A, C) with $p < p_U$

Assume *p* close to p_U : $p = p_U + \varepsilon$ with $\varepsilon < 0$

Data complexity : (as in the truncated case)

$$N = \gamma \cdot \frac{p_U}{\varepsilon^2}$$

Example : [Borst et al 97] and [Knudsen et al 99]

Improbable Differential Distinguisher

Improbable differential :

Truncated differential (A, C) with $p < p_U$

Assume *p* close to p_U : $p = p_U + \varepsilon$ with $\varepsilon < 0$

Data complexity : (as in the truncated case)

$$N = \gamma \cdot \frac{p_U}{\varepsilon^2}$$

Example : [Borst et al 97] and [Knudsen et al 99]

But : Difficulty of finding distinguishers

Idea : [Tezcan 10] and [Mala et al 10] To derive improbable distinguishers from impossible ones

Distinguisher on E is derived from :

- a truncated differential (A, B) over E_0 ,
- ▶ an impossible differential (*B*, *C*) over *E*₁

Distinguisher on E is derived from :

- a truncated differential (A, B) over E_0 ,
- ► an impossible differential (*B*, *C*) over *E*₁

Distinguisher on E is derived from :

- a truncated differential (A, B) over E_0 ,
- ▶ an impossible differential (*B*, *C*) over *E*₁

Distinguisher on E is derived from :

- a truncated differential (A, B) over E_0 ,
- ▶ an impossible differential (*B*, *C*) over *E*₁

Uniform probability :

$$p_U = \frac{|C|}{2^n}$$

Claim :

$$P[A
ightarrow C] = (1-q) \cdot rac{|C|}{|D|}$$

Often $|D| \approx 2^n$ and as in [Tezcan 10], it is assumed that :

$$P[\mathbf{A} \rightarrow \mathbf{C}] \approx (1-q) \cdot \mathbf{p}_U = \mathbf{p}_U + \varepsilon,$$

with $\varepsilon = -q \cdot p_U < 0$

Analyzing the Model

For differential distinguishers :

- To compute the probability of a differential trail
 - Markov assumption is assumed correct when averaging over the keys
- If we do not sum over all trails, we get
 - an underestimate of the probability
 - and an overestimate of data complexity N

For such improbable differential distinguishers :

What is happening in practice? and why?

We denote by p_E the experimental probability

Example 1

24-bit generalized Feistel

Round function

Improbable distinguisher

A :	Х	Υ	0	0	0	0	
	1 round			q =	$q = 2^{-3.91}$		
B :	0	Х	0	0	0	0	
	10 rounds			Imp	Impossible		
C :	0	0	0	Ζ	0	0	

Example 1

24-bit generalized Feistel

Round function

Improbable distinguisher

A :	Х	Υ	0	0	0	0	
	1 round			q =	$q = 2^{-3.91}$		
B :	0	Х	0	0	0	0	
10 rounds			\Downarrow	Imp	Impossible		
C :	0	0	0	Ζ	0	0	

р	p _E	p_U			
2 ^{-20.10}	2 ^{-19.94}	2 ⁻²⁰			

$$X, Y \in \{\texttt{0x1}, ..., \texttt{0xF}\}$$

In this case :

 $p_E > p$ and even $p_E > p_U$

The differential is not improbable!!!

Improbable Differential on PRESENT

[Tezcan 13] : Notion of "undisturbed bits" to find impossible distinguishers on SPN ciphers

Improbable distinguishers on reduced-round PRESENT :

- $\blacktriangleright A$: 3 rounds truncated + 6 rounds impossible (unpublished)
- ▶ B : 5 rounds truncated + 5 rounds impossible [Tezcan 13]

Improbable Differential on PRESENT

[Tezcan 13] : Notion of "undisturbed bits" to find impossible distinguishers on SPN ciphers

Improbable distinguishers on reduced-round PRESENT :

- $\blacktriangleright A$: 3 rounds truncated + 6 rounds impossible (unpublished)
- ▶ B : 5 rounds truncated + 5 rounds impossible [Tezcan 13]

Experiments :

On 3 rounds truncated + 5 rounds impossible of A :

$$egin{array}{lll} q = 2^{-12} & p_U = 2^{-13} \ p = 2^{-13.00035} & p_E = 2^{-12.97} \end{array} \ p \leq p_U \leq p_E \end{array}$$

Experiments on PRESENT

• On 1 round truncated + 4 rounds impossible of \mathcal{B} :

$$q = 2^{-4}$$
 $p_U = 2^{-13.20}$ p_E close to p_E
 $p = 2^{-13.29}$ $p_E = 2^{-13.31}$

Experiments on PRESENT

• On 1 round truncated + 4 rounds impossible of \mathcal{B} :

$$q = 2^{-4}$$
 $p_U = 2^{-13.20}$ p_E close to p
 $p = 2^{-13.29}$ $p_E = 2^{-13.31}$

► On 1 round truncated + 5 rounds impossible of B :

$$egin{array}{ll} q = 2^{-4} & p_U = 2^{-16} & p_E \leq p \leq p_U \ p = 2^{-16.09} & p_E = 2^{-16.49} & {
m All} \ p_E \leq 2^{-16.34} \end{array}$$

Experiments on PRESENT

► On 1 round truncated + 4 rounds impossible of B :

$$q = 2^{-4}$$
 $p_U = 2^{-13.20}$ p_E close to p
 $p = 2^{-13.29}$ $p_E = 2^{-13.31}$

► On 1 round truncated + 5 rounds impossible of B :

$$egin{array}{ll} q = 2^{-4} & p_U = 2^{-16} & p_E \leq p \leq p_U \ p = 2^{-16.09} & p_E = 2^{-16.49} & {
m All} \; p_E \leq 2^{-16.34} \end{array}$$

On 2 rounds truncated + 5 rounds impossible of B :

Conclusion on the Experiments

Observation :

- The experimental probabilities can be different from the expected ones
- We can find under/over-estimate

Conclusion on the Experiments

Observation :

- The experimental probabilities can be different from the expected ones
- We can find under/over-estimate

Question :

- Can we safely multiply truncated differential probabilities?
- For simplicity, in the following explanation, the role of the key is omitted

Multiplying Truncated Differential Probability 1/2

$$\rho = P[A \xrightarrow{E} C] = \frac{1}{|A|} \sum_{a \in A} P_{\mathbf{X},\mathbf{K}} \left[E_{\mathcal{K}}(X) \oplus E_{\mathcal{K}}(X \oplus a) \in C \right]$$

Description:

$$\blacktriangleright E = E_1 \circ E_0,$$

- a truncated differential (A, D) over E_0 ,
- a truncated differential (D, C) over E₁

Is it true that
$$P[A \xrightarrow{E} C] = P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$$
?
In general : NO

Multiplying Truncated Differential Probability 2/2

$$p = \frac{1}{|A|} \sum_{a \in A} \sum_{c \in C} P[a \xrightarrow{E} c]$$

$$\geq \frac{1}{|A|} \sum_{a \in A} \sum_{d \in D} \sum_{c \in C} P[a \xrightarrow{E_0} d] \cdot P[d \xrightarrow{E_1} c]$$

Assuming that $\forall d \in D$, $P[d \stackrel{E_1}{\mapsto} C]$ are equal¹, we obtain

$$p \geq \frac{|C|}{|D|} \frac{1}{|a|} \sum_{a \in A} \sum_{d \in D} P[a \xrightarrow{E_0} d]$$
$$\geq P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$$

¹Assumption can be done for the other part of the cipher

What happens if the assumption is not satisfied?

Example |D = 2|

What happens if the assumption is not satisfied?

Example |D = 2|

$$P[A \to D] \cdot P[D \to C] = \left(\frac{2}{16} + \frac{6}{16}\right) \times \frac{1}{2}\left(\frac{1}{16} + \frac{3}{16}\right) = \frac{16}{256}$$
$$\leq \sum_{d} P[A \to d] \cdot P[d \to C] = \frac{2}{256} + \frac{18}{256} = \frac{20}{256}$$

What happens if the assumption is not satisfied?

Example |D = 2| $P[d \rightarrow C]$ 1/16 3/16 6/16 6/256 -2/16 - 6/256

$$P[A \to D] \cdot P[D \to C] = \left(\frac{2}{16} + \frac{6}{16}\right) \times \frac{1}{2}\left(\frac{1}{16} + \frac{3}{16}\right) = \frac{16}{256}$$
$$\sum_{d} P[A \to d] \cdot P[d \to C] = \frac{6}{256} + \frac{6}{256} = \frac{12}{256}$$

What happens if the assumption is not satisfied?

Example |D = 2| (same probabilities)

$$P[A \to D] \cdot P[D \to C] = \left(\frac{2}{16} + \frac{6}{16}\right) \times \frac{1}{2}\left(\frac{2}{16} + \frac{2}{16}\right) = \frac{16}{256}$$

$$=$$

$$\sum_{d} P[A \to d] \cdot P[d \to C] = \frac{4}{256} + \frac{12}{256} = \frac{16}{256}$$

Summary of the Explanation

$$p \geq \frac{1}{|A|} \sum_{a \in A} \sum_{d \in D} \sum_{c \in C} P[a \xrightarrow{E_0} d] \cdot P[d \xrightarrow{E_1} c]$$

Assuming that $\forall d \in D$, $P[d \xrightarrow{E_1} C]$ or $P[A \xrightarrow{E_0} d]$ are equal, $p \geq P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$

Summary of the Explanation

$$\rho \geq \frac{1}{|A|} \sum_{a \in A} \sum_{d \in D} \sum_{c \in C} P[a \xrightarrow{E_0} d] \cdot P[d \xrightarrow{E_1} c]$$

Assuming that $\forall d \in D$, $P[d \xrightarrow{E_1} C]$ or $P[A \xrightarrow{E_0} d]$ are equal, $p \geq P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$

For truncated distinguisher :

We do not know if

$$P[\mathbf{A} \stackrel{E_0}{\to} D] \cdot P[D \stackrel{E_1}{\to} C]$$

is an under/over-estimate of

$$\frac{1}{|\mathbf{A}|} \sum_{\mathbf{a} \in \mathbf{A}} \sum_{d \in D} \sum_{\mathbf{c} \in \mathbf{C}} P[\mathbf{a} \xrightarrow{E_0} d] \cdot P[d \xrightarrow{E_1} \mathbf{c}]$$

Summary of the Explanation $p = \frac{1}{|A|} \sum_{a \in A} \sum_{d \in D} \sum_{c \in C} P[a \xrightarrow{E_0} d] \cdot P[d \xrightarrow{E_1} c]$

Assuming that $\forall d \in D$, $P[d \xrightarrow{E_1} C]$ or $P[A \xrightarrow{E_0} d]$ are equal, $p = P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$

For improbable distinguisher :

|D| is close to 2ⁿ

► $P[A \xrightarrow{E_0} D] \cdot P[D \xrightarrow{E_1} C]$ is not an under/over-estimate of $P[A \xrightarrow{E} C]$

Conclusion

- Improbable differential can be used for cryptanalytic purposes
- Tezcan and Mala et al proposed to derive improbable distinguishers from impossible ones
- We show based on experiments that the model is not completely correct

