Links Between Truncated Differential and Multidimensional Linear Properties of Block Ciphers and Underlying Attack Complexities

Céline Blondeau and Kaisa Nyberg

Monday 12 May 2014
EUROCRYPT, Copenhagen

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis
Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks
Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT
Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion

Outline

Statistical Attacks

Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis
Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks
Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT
Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion

Differential Cryptanalysis [Biham Shamir 90]

Difference between plaintext and ciphertext pairs
Input difference : δ
Output Difference : Δ

Differential Probability :

$$
\mathbf{P}[\delta \rightarrow \Delta]=P_{x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\Delta\right]
$$

Truncated Differential (TD) [Knudsen 94] :

Set of input differences : $\delta \in A$
Set of output differences : $\Delta \in B$

$$
\mathbf{P}[A \rightarrow B]=\frac{1}{|A|} \sum_{\delta \in A} \sum_{\Delta \in B} P[\delta \rightarrow \Delta]
$$

Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext, key and ciphertext bits

Input mask: u
Output mask: v
Correlation:

$$
\operatorname{cor}_{x}(u, v)=2 \cdot P_{x}\left[u \cdot x \oplus v \cdot E_{k}(x)=0\right]-1
$$

Multidimensional Linear (ML) Approximation [Hermelin et al 08] :

Set of masks $(u, v) \in U \times V \backslash\{0,0\}$
Capacity :

$$
C=\sum_{u \in U \backslash\{0\}} \sum_{v \in V \backslash\{0\}} \operatorname{cor}_{x}^{2}(u, v)
$$

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis
Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks
Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT
Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion

Link between Differential and Linear Cryptanalysis

[Chabaud Vaudenay 94] :
Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$
$\mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{m}}(-1)^{u \cdot \delta \oplus v \cdot \Delta} \operatorname{cor}_{x}^{2}(u, v)$

Link between Differential and Linear Cryptanalysis

[Chabaud Vaudenay 94] :

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$

$\mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{m}}(-1)^{u \cdot \delta \oplus v \cdot \Delta} \operatorname{cor}_{x}^{2}(u, v)$
Generalization :

- ML: $\left[\left(u_{s}, 0\right),\left(v_{q}, 0\right)\right]_{u_{s} \in \mathbb{F}_{2}^{s} \backslash\{0\}, v_{q} \in \mathbb{F}_{2}^{q}}$
- TD : $\left[\left(0, \delta_{t}\right),\left(0, \Delta_{r}\right)\right]_{\delta_{t} \in \mathbb{F}_{2}^{t}, \Delta_{r} \in \mathbb{F}_{2}^{r}}$
with capacity C
with probability p

Link between Differential and Linear Cryptanalysis

[Chabaud Vaudenay 94] :

$$
\begin{aligned}
& \text { Let } F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m} \\
& \mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{m}}(-1)^{u \cdot \delta \oplus v \cdot \Delta} \operatorname{cor}_{x}^{2}(u, v)
\end{aligned}
$$

Generalization :

- ML : $\left[\left(u_{s}, 0\right),\left(v_{q}, 0\right)\right]_{u_{s} \in \mathbb{F}_{2}^{s} \backslash\{0\}, v_{q} \in \mathbb{F}_{2}^{q}} \quad$ with capacity C
- TD : $\left[\left(0, \delta_{t}\right),\left(0, \Delta_{r}\right)\right]_{\delta_{t} \in \mathbb{F}_{2}^{t}, \Delta_{r} \in \mathbb{F}_{2}^{r}} \quad$ with probability p

$$
p=2^{-q}(C+1)
$$

Link between Differential and Linear Cryptanalysis

[Chabaud Vaudenay 94] :

$$
\begin{aligned}
& \text { Let } F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m} \\
& \mathbf{P}[\delta \rightarrow \Delta]=2^{-m} \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{m}}(-1)^{u \cdot \delta \oplus v \cdot \Delta} \operatorname{cor}_{x}^{2}(u, v)
\end{aligned}
$$

Generalization :

- ML : $\left[\left(u_{s}, 0\right),\left(v_{q}, 0\right)\right]_{u_{s} \in \mathbb{F}_{2}^{s} \backslash\{0\}, v_{q} \in \mathbb{F}_{2}^{q}} \quad$ with capacity C
- TD : $\left[\left(0, \delta_{t}\right),\left(0, \Delta_{r}\right)\right]_{\delta_{t} \in \mathbb{F}_{2}^{t}, \Delta_{r} \in \mathbb{F}_{2}^{r}} \quad$ with probability p

$$
p=2^{-q}(C+1)
$$

- TD is a chosen plaintext (CP) attack
- ML is a known plaintext (KP) attack

Data Complexity of a Distinguishing Attack

[Selçuk 07] $P_{S}=50 \%$ and $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$, with a the advantage

- Multidimensional Linear :

$$
N^{M L}=\frac{2^{(s+q+1) / 2}}{C} \cdot \varphi_{a}
$$

- Truncated Differential :

$$
N^{T D}=\frac{2^{-q+1}}{M \cdot\left(p-2^{-q}\right)^{2}} \cdot \varphi_{a}^{2}
$$

where M is the size of a structure (usually $M=2^{t}$)

Data Complexity of a Distinguishing Attack

[Selçuk 07] $P_{S}=50 \%$ and $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$, with a the advantage

- Multidimensional Linear :

$$
N^{M L}=\frac{2^{(s+q+1) / 2}}{C} \cdot \varphi_{a}
$$

- Truncated Differential :

$$
N^{T D}=\frac{2^{-q+1}}{M \cdot\left(p-2^{-q}\right)^{2}} \cdot \varphi_{a}^{2}
$$

where M is the size of a structure (usually $M=2^{t}$)

- For $p=2^{-q}(C+1)$:

$$
N^{T D}=\frac{2^{q+1}}{2^{t} \cdot C^{2}} \cdot \varphi_{a}^{2}
$$

Data Complexity of a Distinguishing Attack

 [Selçuk 07] $P_{S}=50 \%$ and $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$, with a the advantage$$
N^{M L}=\frac{2^{(s+q+1) / 2}}{C} \cdot \varphi_{a}
$$

- For $p=2^{-q}(C+1)$:

$$
N^{T D}=\frac{2^{q+1}}{2^{t} \cdot C^{2}} \cdot \varphi_{a}^{2}
$$

Data Complexity of a Distinguishing Attack

 [Selçuk 07] $P_{S}=50 \%$ and $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$, with a the advantage$$
N^{M L}=\frac{2^{(s+q+1) / 2}}{C} \cdot \varphi_{a}
$$

- For $p=2^{-q}(C+1)$:

$$
\begin{aligned}
& N^{T D}=\frac{2^{q+1}}{2^{t} \cdot C^{2}} \cdot \varphi_{a}^{2} \\
& N^{T D}=\frac{1}{2^{n}} \cdot\left(N^{M L}\right)^{2}
\end{aligned}
$$

Data Complexity of a Distinguishing Attack

 [Selçuk 07] $P_{S}=50 \%$ and $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$, with a the advantage$$
N^{M L}=\frac{2^{(s+q+1) / 2}}{C} \cdot \varphi_{a}
$$

- For $p=2^{-q}(C+1)$:

$$
\begin{aligned}
& N^{T D}=\frac{2^{q+1}}{2^{t} \cdot C^{2}} \cdot \varphi_{a}^{2} \\
& N^{T D}=\frac{1}{2^{n}} \cdot\left(N^{M L}\right)^{2}
\end{aligned}
$$

$N^{T D} \leq N^{M L}$ with equality when using the full codebook

Truncated Differential Distinguisher

$D=0$
for S values of $x_{s} \in \mathbb{F}_{2}^{s}$ do
Create a table T of size M for M values of $x_{t} \in \mathbb{F}_{2}^{t}$ do

$$
\begin{aligned}
& \left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right) \\
& T\left[x_{t}\right]=y_{q}
\end{aligned}
$$

for all pairs $\left(x_{t}, x_{t}^{\prime}\right)$ do if $\left(T\left[x_{t}\right] \oplus T\left[x_{t}^{\prime}\right]\right)==0$ then $D+=1$

M : size of a structure
S : number of structures

$$
N^{T D}=S \cdot M
$$

For S structures

For all elements in a structure
Store the partial ciphertexts
Count the number of pairs which have no difference on the q bits

Truncated Differential Distinguisher

Time Complexity : Verifying all pairs

$$
\text { Time } \approx S \cdot M^{2} / 2
$$

Memory Complexity: Storing all ciphertexts inside a structure

$$
\text { Memory } \approx M
$$

$D=0$
for S values of $x_{s} \in \mathbb{F}_{2}^{S}$ do
Create a table T of size M for M values of $x_{t} \in \mathbb{F}_{2}^{t}$ do
$\left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right)$ $T\left[x_{t}\right]=y_{q}$
for all pairs $\left(x_{t}, x_{t}^{\prime}\right)$ do
if $\left(T\left[x_{t}\right] \oplus T\left[x_{t}^{\prime}\right]\right)==0$ then $D+=1$

For S structures

For all elements in a structure
Store the partial ciphertexts
Count the number of pairs which have no difference on the q bits

Multidimensional Linear Distinguisher

Set a counter D to 0
Create a table T of size 2^{q+s} for $N^{M L}$ plaintexts do

$$
\begin{aligned}
& \left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right) \\
& T\left[\left(x_{s}, y_{q}\right)\right]+=1
\end{aligned}
$$

for all $\left(x_{s}, y_{q}\right)$ do

$$
D+=\left(T\left[\left(x_{s}, y_{q}\right)\right]-N / 2^{q+s}\right)^{2}
$$

For $N^{M L}$ plaintexts
Count the number of occurrences of each pair $\left(x_{s}, y_{q}\right)$

Compute the statistic

Multidimensional Linear Distinguisher

Time Complexity: Reading all messages

$$
\text { Time } \approx N^{M L}
$$

Memory Complexity: Storing the number of occurrences of $\left(x_{s}^{i}, y_{q}^{j}\right)_{i, j}$

$$
\text { Memory } \approx 2^{s+q}
$$

Set a counter D to 0
Create a table T of size 2^{q+s} for $N^{M L}$ plaintexts do

$$
\begin{aligned}
& \left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right) \\
& T\left[\left(x_{s}, y_{q}\right)\right]+=1
\end{aligned}
$$

for all $\left(x_{s}, y_{q}\right)$ do

$$
D+=\left(T\left[\left(x_{s}, y_{q}\right)\right]-N / 2^{q+s}\right)^{2}
$$

For $N^{M L}$ plaintexts Count the number of occurrences of each pair $\left(x_{s}, y_{q}\right)$

Compute the statistic

Complexities of TD and ML Attacks

- ML distinguisher :

$$
\begin{gathered}
\text { Data }=N^{M L} \\
\text { Time } \approx N^{M L} \\
\text { Memory } \approx 2^{s+q}
\end{gathered}
$$

- TD distinguisher :

$$
\begin{gathered}
\text { Data }=N^{T D}=S \cdot 2^{t}<N^{M L} \\
\text { Time } \approx N^{T D} \cdot 2^{t-1}
\end{gathered}
$$

Memory $\approx 2^{t}$

Question: Can we decrease the time complexity of a TD attack?

TD with Less Time Complexity

- Dominant part: Verifying the output difference for each pair of ciphertexts

Example:

- 4 ciphertexts : $\left(y_{1}, b_{1}\right)\left(y_{2}, b_{2}\right)\left(y_{1}, b_{3}\right)\left(y_{3}, b_{4}\right)$ 1 pair with equal y_{i}
- Previous algorithm : 6 comparisons

TD with Less Time Complexity

- Dominant part: Verifying the output difference for each pair of ciphertexts

Example:

- 4 ciphertexts : $\left(y_{1}, b_{1}\right)\left(y_{2}, b_{2}\right)\left(y_{1}, b_{3}\right)\left(y_{3}, b_{4}\right)$ 1 pair with equal y_{i}
- Previous algorithm : 6 comparisons

Improved Version :

- Count the occurrences of each y_{i} :

	y_{1}	y_{2}	y_{3}
$T\left[y_{i}\right]$	2	1	1

and compute $D=\sum_{i} T\left[y_{i}\right]\left(T\left[y_{i}\right]-1\right) / 2=1$

TD with Less Time Complexity

$D=0$
for S values of $x_{s} \in \mathbb{F}_{2}^{s}$ do Create a table T of size 2^{q} for M values of $x_{t} \in \mathbb{F}_{2}^{t}$ do

$$
\begin{aligned}
& \left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right) \\
& T\left[y_{q}\right]+=1
\end{aligned}
$$

for all $y_{q} \in \mathbb{F}_{2}^{q}$ do
$D+=T\left[y_{q}\right]\left(T\left[y_{q}\right]-1\right) / 2$

For S structures

For all elements in a structure
Count the number of occurrences of the partial ciphertexts
Compute the statistic

$$
\begin{gathered}
\text { Data }=N^{T D}=S \cdot M<N^{M L} \\
\text { Time } \approx \max \left(N^{T D}, S \cdot 2^{q}\right) \\
\text { Memory } \approx 2^{q}
\end{gathered}
$$

TD with Less Time Complexity

$D=0$
for S values of $x_{s} \in \mathbb{F}_{2}^{s}$ do Create a table T of size 2^{q} for M values of $x_{t} \in \mathbb{F}_{2}^{t}$ do

$$
\begin{aligned}
& \left(y_{q}, y_{r}\right)=E\left(\left(x_{s}, x_{t}\right)\right) \\
& T\left[y_{q}\right]+=1
\end{aligned}
$$

for all $y_{q} \in \mathbb{F}_{2}^{q}$ do
$D+=T\left[y_{q}\right]\left(T\left[y_{q}\right]-1\right) / 2$

For S structures

For all elements in a structure
Count the number of occurrences of the partial ciphertexts
Compute the statistic

Remark:

This distinguisher is the same as the statistical saturation (SS) distinguisher

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis
Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks
Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT
Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion

Statistical Saturation (SS) Attack [Collard Standaert 09]

Idea:

- "Dual" of the saturation attack
- Takes advantage of several plaintexts with some fixed bits while the others vary randomly
- We observe the diffusion of the fixed bits during the encryption process

Application on PRESENT [Bogdanov et al 08] :

- Distinguisher on 20 / 21 rounds
- Key-recovery on 24 rounds

Link between SS, TD and ML distinguishers

Link [Leander 11]:
For a fixed $x_{s} \in \mathbb{F}_{2}^{S}$, we denote by $C\left(x_{s}\right)$ the capacity of the distribution of y_{q} :

$$
C=2^{-s} \sum_{x_{s} \in \mathbb{F}_{2}^{s}} C\left(x_{s}\right)
$$

Link between SS, TD and ML distinguishers

Link [Leander 11]:
For a fixed $x_{s} \in \mathbb{F}_{2}^{S}$, we denote by $C\left(x_{s}\right)$ the capacity of the distribution of y_{q} :

$$
C=2^{-s} \sum_{x_{s} \in \mathbb{F}_{2}^{s}} C\left(x_{s}\right)
$$

- SS attacks link mathematically with ML attacks

Link between SS, TD and ML distinguishers

Link [Leander 11]:
For a fixed $x_{s} \in \mathbb{F}_{2}^{S}$, we denote by $C\left(x_{s}\right)$ the capacity of the distribution of y_{q} :

$$
C=2^{-s} \sum_{x_{s} \in \mathbb{F}_{2}^{s}} C\left(x_{s}\right)
$$

- SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack
ML is a known plaintext (KP) attack

Link between SS, TD and ML distinguishers

Link [Leander 11]:
For a fixed $x_{s} \in \mathbb{F}_{2}^{S}$, we denote by $C\left(x_{s}\right)$ the capacity of the distribution of y_{q} :

$$
C=2^{-s} \sum_{x_{s} \in \mathbb{F}_{2}^{s}} C\left(x_{s}\right)
$$

- SS attacks link mathematically with ML attacks

> SS is a chosen plaintext (CP) attack
> ML is a known plaintext (KP) attack

- SS attacks link algorithmically with TD attacks

On the SS Attack on PRESENT [Collard Standaert 09]

Attack on $r+4$ rounds with $M=2^{32}$

- [Collard Standaert 09] Data increases linearly
— [Leander 11]
Estimate of the capacity C
_ [Our work]
Data is $N=\frac{2^{q+1}}{M \cdot C^{2}} \cdot \varphi_{a}^{2}$

On the SS Attack on PRESENT [Collard Standaert 09]

Attack on $r+4$ rounds with $M=2^{32}$

- [Collard Standaert 09] Data increases linearly
— [Leander 11]
Estimate of the capacity C
- [Our work]

Data is $N=\frac{2^{q+1}}{M \cdot C^{2}} \cdot \varphi_{a}^{2}$

- The attack has been verified experimentally [Kerckhof et al 11]
- Our estimate match with the experiments (N around 2^{51} for 19 rounds)

On the SS Attack on PRESENT [Collard Standaert 09]

Attack on $r+3$ rounds with $M=2^{48}$

- In this model, one can only perform an attack 23 rounds

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis
Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks
Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT
Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion

KP ML and CP TD Attacks : An Example on PRESENT

 [Cho 10]:- ML distinguisher on 24 rounds
- KP ML attack on 26 rounds (inversion of the first and last round)
First round : (In Cho's ML characteristic)

- KP ML \Rightarrow Guess 16-key bits

KP ML and CP TD Attacks : An Example on PRESENT

 [Cho 10]:- ML distinguisher on 24 rounds
- KP ML attack on 26 rounds (inversion of the first and last round)
First round : (In Cho's ML characteristic)

- KP ML \Rightarrow Guess 16-key bits

Using the link between TD and ML

- CP TD \Rightarrow Guess 4, 8, 12, 16-key bits

Example of CP TD Attack on 24 Rounds of PRESENT

Data Complexity (Data) :

_ KP ML
_ CP TD fixing 4 bits
_ CP TD fixing 8 bits
_ CP TD fixing 12 bits

- The Data of a KP ML is proportional to $\varphi_{a}=\Phi^{-1}\left(1-2^{-a}\right)$
- The Data of a CP TD is proportional to φ_{a}^{2}
- Depending of the size of the fixation, the data complexity of a CP ML attack can be smaller than for a KP ML attack

Example of CP TD Attack on 24 Rounds of PRESENT

Fixing 4 bits :

Model	a	Data	Memory	Time $_{1}$	Time $_{2}$
CP TD	10	$2^{54.75}$	2^{29}	$2^{54.75}$	2^{70}
KP ML	5	$2^{57.14}$	2^{32}	$2^{57.14}$	2^{75}

Time $_{1}$: Complexity of the distillation phase
Time $_{2}$: Complexity of the search phase

- Data, time and memory complexities of the CP TD are smaller than those of a KP ML attack

Example of CP TD Attack on 26 Rounds of PRESENT

_ KP ML
_ CP TD fixing 4 bits
_ CP TD fixing 8 bits

Model	a	Data	Memory	Time $_{1}$	Time $_{2}$
CP TD	4	$2^{63.16}$	2^{29}	$2^{63.16}$	2^{76}
KP ML	4	$2^{62.08}$	2^{32}	$2^{62.08}$	2^{76}

- A CP TD attack on 26 rounds of PRESENT with less memory than the KP ML attack
- The previous differential-type attack was on 19 rounds

Conclusion

In this work:

- We analyze the complexities of some statistical attacks and their relation
- We show that the SS attack is a TD attack
- We illustrate that a KP ML attack can be converted to a CP TD attack with smaller complexities

Thank You

