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Céline Blondeau and Kaisa Nyberg
Aalto University

Monday 12 May 2014

EUROCRYPT, Copenhagen



Link Between TD and ML Properties

2/22

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis

Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks

Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT

Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion



Link Between TD and ML Properties

3/22

Outline

Statistical Attacks
Truncated Differential (TD) Cryptanalysis
Multidimensional Linear (ML) Cryptanalysis

Link between ML and TD Attacks
Mathematical Relation between ML and TD
Complexity of TD and ML Distinguishing Attacks

Statistical Saturation Attack
Definition
Statistical Saturation Attack on PRESENT

Converting a ML Attack to a TD Attack
Example on PRESENT
Conclusion



Link Between TD and ML Properties

4/22

Differential Cryptanalysis [Biham Shamir 90]
Difference between plaintext and ciphertext pairs

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference : δ
Output Difference : ∆

Differential Probability :

P[δ → ∆] = Px [ Ek (x)⊕ Ek (x ⊕ δ) = ∆]

Truncated Differential (TD) [Knudsen 94] :

Set of input differences : δ ∈ A
Set of output differences : ∆ ∈ B

P[A→ B] =
1
|A|

∑
δ∈A

∑
∆∈B

P[δ → ∆]
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Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext, key and ciphertext bits

x

y = Ek(x)
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Input mask : u
Output mask : v

Correlation :

corx (u, v) = 2 · Px [u · x ⊕ v · Ek (x) = 0]− 1

Multidimensional Linear (ML) Approximation
[Hermelin et al 08] :

Set of masks (u, v) ∈ U × V \ {0,0}

Capacity :

C =
∑

u∈U\{0}

∑
v∈V\{0}

cor2
x (u, v)
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Link between Differential and Linear Cryptanalysis
[Chabaud Vaudenay 94] :

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
u∈Fn

2

∑
v∈Fm

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0
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∑
u∈Fn
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∑
v∈Fm

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

Generalization :

I ML : [(us,0), (vq,0)]us∈Fs
2\{0}, vq∈Fq

2
with capacity C

I TD : [(0, δt ), (0,∆r )]δt∈Ft
2, ∆r∈Fr

2
with probability p
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[Chabaud Vaudenay 94] :

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
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︷ ︸︸ ︷n bits

0 ∆r
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Generalization :

I ML : [(us,0), (vq,0)]us∈Fs
2\{0}, vq∈Fq

2
with capacity C

I TD : [(0, δt ), (0,∆r )]δt∈Ft
2, ∆r∈Fr

2
with probability p

p = 2−q(C + 1)

I TD is a chosen plaintext (CP) attack
I ML is a known plaintext (KP) attack
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Data Complexity of a Distinguishing Attack

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0

[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

M · (p − 2−q)2 · ϕ
2
a,

where M is the size of a structure (usually M = 2t )
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[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

M · (p − 2−q)2 · ϕ
2
a,

where M is the size of a structure (usually M = 2t )

I For p = 2−q(C + 1) :
NTD =

2q+1

2t · C2 · ϕa
2
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Data Complexity of a Distinguishing Attack
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[Selçuk 07] PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I For p = 2−q(C + 1) :
NTD =

2q+1

2t · C2 · ϕa
2

NTD =
1
2n · (N

ML)2

NTD ≤ NML with equality when using the full codebook
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Truncated Differential Distinguisher

D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size M
for M values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+= 1

For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference on the q bits

︷ ︸︸ ︷ ︷ ︸︸ ︷s bits t bits

0 δt

0 ∆r

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸

x = (xs, xt )

y = (yq, yr )

M : size of a structure
S : number of structures

NTD = S ·M
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Truncated Differential Distinguisher

D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size M
for M values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+= 1

For S structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference on the q bits

Time Complexity : Verifying all pairs
Time ≈ S ·M2/2

Memory Complexity : Storing all ciphertexts inside a structure
Memory ≈ M
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Multidimensional Linear Distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for NML plaintexts do
(yq, yr ) = E((xs, xt ))
T [(xs, yq)]+= 1

for all (xs, yq) do
D+= (T [(xs, yq)]− N/2q+s)2

For NML plaintexts
Count the number of
occurrences of each pair (xs, yq)

Compute the statistic

︷ ︸︸ ︷ ︷ ︸︸ ︷s bits t bits

us 0

vq 0
q bits r bits

︸ ︷︷ ︸ ︸ ︷︷ ︸

x = (xs, xt )

y = (yq, yr )
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Multidimensional Linear Distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for NML plaintexts do
(yq, yr ) = E((xs, xt ))
T [(xs, yq)]+= 1

for all (xs, yq) do
D+= (T [(xs, yq)]− N/2q+s)2

For NML plaintexts
Count the number of
occurrences of each pair (xs, yq)

Compute the statistic

Time Complexity : Reading all messages
Time ≈ NML

Memory Complexity : Storing the number of occurrences of (x i
s, y

j
q)i,j

Memory ≈ 2s+q
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Complexities of TD and ML Attacks
I ML distinguisher :

Data = NML

Time ≈ NML

Memory ≈ 2s+q

I TD distinguisher :

Data = NTD = S · 2t < NML

Time ≈ NTD · 2t−1

Memory ≈ 2t

Question : Can we decrease the time complexity of a TD attack?

︷ ︸︸ ︷ ︷ ︸︸ ︷
0 δt

us 0

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸
︸ ︷︷ ︸

n bits

︷ ︸︸ ︷n bits

0 ∆r

vq 0
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TD with Less Time Complexity
I Dominant part: Verifying the output difference for each pair

of ciphertexts

Example :

I 4 ciphertexts : (y1,b1) (y2,b2) (y1,b3) (y3,b4)
1 pair with equal yi

I Previous algorithm : 6 comparisons

Improved Version :
I Count the occurrences of each yi :

y1 y2 y3
T [yi ] 2 1 1

and compute D =
∑

i T [yi ](T [yi ]− 1)/2 = 1
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TD with Less Time Complexity
D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size 2q

for M values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+= 1

for all yq ∈ Fq
2 do

D+= T [yq](T [yq]− 1)/2

For S structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

Data = NTD = S ·M < NML

Time ≈ max(NTD,S · 2q)

Memory ≈ 2q
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TD with Less Time Complexity
D = 0
for S values of xs ∈ Fs

2 do
Create a table T of size 2q

for M values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+= 1

for all yq ∈ Fq
2 do

D+= T [yq](T [yq]− 1)/2

For S structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

Remark :

This distinguisher is the same as the statistical saturation (SS)
distinguisher
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Statistical Saturation (SS) Attack [Collard Standaert 09]

Idea :
I “Dual” of the saturation attack

I Takes advantage of several plaintexts with some fixed bits
while the others vary randomly

I We observe the diffusion of the fixed bits during the
encryption process

Application on PRESENT [Bogdanov et al 08] :
I Distinguisher on 20 / 21 rounds

I Key-recovery on 24 rounds
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Link between SS, TD and ML distinguishers

Link [Leander 11] :
For a fixed xs ∈ Fs

2, we denote by C(xs) the capacity of the
distribution of yq :

C = 2−s
∑

xs∈Fs
2

C(xs)

I SS attacks link mathematically with ML attacks

SS is a chosen plaintext (CP) attack
ML is a known plaintext (KP) attack

I SS attacks link algorithmically with TD attacks
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On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 4 rounds with M = 232

0

10

20

30

40

50

60

5 10 15 20

−
lo

g(
C

),
lo

g(
N

)

Round r of the distinguisher

Attack on 15 rounds
with N = 230.54

Attack on 17 rounds
with N = 240.52

Attack on 19 rounds
with N = 250.96

[Collard Standaert 09]
Data increases linearly

[Leander 11]
Estimate of the capacity C

[Our work]

Data is N =
2q+1

M · C2 · ϕ
2
a
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Attack on r + 4 rounds with M = 232

0

10

20

30

40

50

60

5 10 15 20

−
lo

g(
C

),
lo

g(
N

)

Round r of the distinguisher

Attack on 15 rounds
with N = 230.54

Attack on 17 rounds
with N = 240.52

Attack on 19 rounds
with N = 250.96

[Collard Standaert 09]
Data increases linearly

[Leander 11]
Estimate of the capacity C

[Our work]

Data is N =
2q+1

M · C2 · ϕ
2
a

I The attack has been verified experimentally [Kerckhof et al 11]
I Our estimate match with the experiments

(N around 251 for 19 rounds)
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On the SS Attack on PRESENT [Collard Standaert 09]

Attack on r + 3 rounds with M = 248

0

10

20

30

40

50

60

5 10 15 20

−
lo

g(
C

),
lo

g(
N

)

Round r of the distinguisher

Attack 9 rounds
with N = 217.44

Attack 10 rounds
with N = 220.07

Attack 23 rounds
with N = 261.04

Attack 24 rounds
with N = 266.31

Estimate of the capacity C

Data is proportional to
1
C

Data is N =
2q+1

M · C2 · ϕ
2
a

I In this model, one can only perform an attack 23 rounds
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KP ML and CP TD Attacks : An Example on PRESENT
[Cho 10] :

I ML distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round : (In Cho’s ML characteristic)

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 · 24 linear masks

16-key bits can be tested

I KP ML⇒ Guess 16-key bits
Using the link between TD and ML

Chosen Plaintext⇒ Guess 4,8,12,16 bits
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KP ML and CP TD Attacks : An Example on PRESENT
[Cho 10] :

I ML distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round : (In Cho’s ML characteristic)

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 bits are fixed

Fixation of 4 bits
12-key bits can be tested

I KP ML⇒ Guess 16-key bits
Using the link between TD and ML

I CP TD⇒ Guess 4,8,12,16-key bits
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Example of CP TD Attack on 24 Rounds of PRESENT
Data Complexity (Data) :

48

50

52

54

56

58

60

62

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

KP ML
CP TD fixing 4 bits
CP TD fixing 8 bits
CP TD fixing 12 bits

I The Data of a KP ML is proportional to ϕa = Φ−1(1− 2−a)

I The Data of a CP TD is proportional to ϕ2
a

I Depending of the size of the fixation, the data complexity of
a CP ML attack can be smaller than for a KP ML attack
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Example of CP TD Attack on 24 Rounds of PRESENT

Fixing 4 bits :

Model a Data Memory Time1 Time2

CP TD 10 254.75 229 254.75 270

KP ML 5 257.14 232 257.14 275

Time1: Complexity of the distillation phase
Time2: Complexity of the search phase

I Data, time and memory complexities of the CP TD are
smaller than those of a KP ML attack
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Example of CP TD Attack on 26 Rounds of PRESENT

58

59

60

61

62

63

64

65

66

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

KP ML
CP TD fixing 4 bits
CP TD fixing 8 bits

Model a Data Memory Time1 Time2

CP TD 4 263.16 229 263.16 276

KP ML 4 262.08 232 262.08 276

I A CP TD attack on 26 rounds of PRESENT with less
memory than the KP ML attack

I The previous differential-type attack was on 19 rounds
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Conclusion

In this work :

I We analyze the complexities of some statistical attacks
and their relation

I We show that the SS attack is a TD attack

I We illustrate that a KP ML attack can be converted to a CP
TD attack with smaller complexities

Thank You
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