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Differential Cryptanalysis [Biham Shamir 90]
Difference between plaintext and ciphertext pairs

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference : δ
Output Difference : ∆

Differential Probability :

P[δ → ∆] = Pk ,x [ Ek (x)⊕ Ek (x ⊕ δ) = ∆]

Truncated Differential (TD) [Knudsen 94] :

Set of input differences : δ ∈ A
Set of output differences : ∆ ∈ B

P[A→ B] =
1
|A|

∑
δ∈A

∑
∆∈B

P[δ → ∆]
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Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext, key and ciphertext bits
x

y = Ek(x)
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Input mask : u
Key mask : κ
Output mask : v

Bias :
ε = 2−n#{x ∈ Fn

2| u · x ⊕ κ · k ⊕ v · y = 0} − 1
2

Correlation : corx (u, v) = 2ε

Multidimensional linear (ML) [Hermelin et al 08] :

Set of masks (u, v) ∈ U × V \ {0,0}

Capacity : C =
∑

u∈U

∑
v∈V

cor2
x (u, v)
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Statistical Saturation Attack [Collard Standaert 09]

The distinguisher :
D = 0
for M values of xs ∈ Fs

2 do
Initialize a table T of size 2q

for S(= 2t ) values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq]2

︷ ︸︸ ︷ ︷ ︸︸ ︷
CC· · ·CC **· · · · · · · · · **︸ ︷︷ ︸ ︸ ︷︷ ︸

s bits t bits

Fixation Structure

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸??· · · · · · ??

︷ ︸︸ ︷Observed bits

x = (xs, xt)

y = (yq, yr )
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Statistical Saturation Attack [Collard Standaert 09]

The distinguisher :
D = 0
for M values of xs ∈ Fs

2 do
Initialize a table T of size 2q

for S(= 2t ) values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq]2

For M structures

For (all) elements in a structure

Count the number of
occurrences of yq

Compute the statistic

The key-recovery attack :

Adding rounds,
I At the end⇒ time and memory complexity cost
I At the beginning⇒ also data complexity cost
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Truncated Differential Distinguishers (1)

D = 0
for M values of xs ∈ Fs

2 do
Create a table T of size S
for S(= 2t ) values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+ = 1

︷ ︸︸ ︷ ︷ ︸︸ ︷s bits t bits

0 δt

0 ∆r

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸

x = (xs, xt)

y = (yq, yr )
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Truncated Differential Distinguishers (1)

D = 0
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2 do
Create a table T of size S
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2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+ = 1

For M structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference in Fq

2
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Truncated Differential Distinguishers (1)

D = 0
for M values of xs ∈ Fs

2 do
Create a table T of size S
for S(= 2t ) values of xt ∈ Ft

2 do
(yq, yr ) = E((xs, xt ))
T [xt ] = yq

for all pairs (xt , x ′t ) do
if (T [xt ]⊕ T [x ′t ]) == 0 then

D+ = 1

For M structures

For all elements in a structure

Store the partial ciphertexts

Count the number of pairs which
have no difference in Fq

2

Time complexity : dominated by the step consisting at verifying
all pairs

Time ≈ M · S2/2
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TD with Less Time Complexity

I Checking if the ciphertext pairs have no difference in Fq
2

Example :

I 4 ciphertexts : (y1,b1) (y2,b2) (y1,b3) (y4,b4)
1 pair with equal yq

I Previous algorithm : 6 comparisons

I Counting the number of occurrences of each yq :
y1 y2 y3

T [yq] 2 1 1

and computing D =
∑

q T [yq](T [yq]− 1)/2 = 1

Complexity : storing the number of occurrences
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Truncated Differential Distinguishers (2)
D = 0
for M values of xs ∈ Fs

2 do
Create a table T of size 2q

for S(= 2t ) values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq](T [yq]− 1)/2

For M structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic
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for M values of xs ∈ Fs

2 do
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for S(= 2t ) values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq](T [yq]− 1)/2

For M structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

Remark : ∑
yq

T [yq] · (T [yq]− 1)/2 =
1
2

∑
yq

T [yq]2 −

S︷ ︸︸ ︷∑
yq

T [yq]

For each structure, a capacity is computed :
∑

yq
T [yq]2
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Truncated Differential Distinguishers (2)
D = 0
for M values of xs ∈ Fs

2 do
Create a table T of size 2q

for S(= 2t ) values of xt ∈ Ft
2 do

(yq, yr ) = E((xs, xt ))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq](T [yq]− 1)/2

For M structures

For all elements in a structure

Count the number of occurrences
of the partial ciphertexts

Compute the statistic

Remark : ∑
yq

T [yq] · (T [yq]− 1)/2 =
1
2

∑
yq

T [yq]2 −

S︷ ︸︸ ︷∑
yq

T [yq]

For each structure, a capacity is computed :
∑

yq
T [yq]2

I This distinguisher is the same as the SS distinguisher
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Link between SS and ML distinguishers

Link [Leander 11] :
For a fixed xs ∈ Fs

2 we denote by C(xs) the capacity of the
distribution of yq :

C = 2−s
∑

xs∈Fs
2

C(xs)

SS is chosen plaintext (CP) attack
ML is known plaintext (KP) attack

To summarize :
I SS attacks link mathematically with ML attacks
I SS attacks link algorithmically with TD attacks
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Link between Differential and Linear Cryptanalysis
[Chabaud Vaudenay 94]

Let F : Fn
2 → Fm

2

P[δ → ∆] = 2−m
∑
u∈Fn

2

∑
v∈Fm

2

(−1)u·δ⊕v ·∆cor2
x (u, v)

This link in the literature :

I almost bent (AB) functions are almost perfect non-linear
(APN)

I · · ·

I [Blondeau Nyberg 13] : Computation of truncated differential
probability using square correlations
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Generalization of the Previous Link

For all δs ∈ Fs
2 and ∆q ∈ Fq

2,

2−t
∑

δt∈Ft
2,∆r∈Fr

2

P[(δs, δt )
F→ (∆q ,∆r )] =

2−q
∑

us∈Fs
2,vq∈Fq

2

(−1)us·δs⊕vq ·∆q cor2
x ((us,0) · x ⊕ (vq ,0) · F (x))

︷ ︸︸ ︷ ︷ ︸︸ ︷
δs δt

s bits t bits

q bits r bits
︸ ︷︷ ︸ ︸ ︷︷ ︸∆q ∆r
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If δs = 0 and ∆q = 0

2−t
∑

δt∈Ft
2,∆r∈Fr

2

P[(0, δt )
F→ (0,∆r )] = 2−q

∑
us∈Fs

2,vq∈Fq
2

cor2
x ((us,0) · x ⊕ (vq ,0) · F (x))
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2,vq∈Fq
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︸ ︷︷ ︸
p 2−q(C + 1)=
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TD and ML
I ML : [(us,0), (vq,0)]us∈Fs

2\{0}, vq∈Fq
2

with capacity C
I TD : [(0, δt ), (0,∆r )]δt∈Ft

2, ∆r∈Fr
2

with probability p

p = 2−q(C + 1)

p∗ : probability if we assume δt 6= 0 p = 2t−1
2t p∗ + 2−t

Zero Correlation and Impossible Differential [Blondeau Nyberg
13] :

I Zero Correlation : C = 0
I Impossible Differential : p∗ = 0 and p = 2−t

If t = q : Zero Correlation is mathematically equivalent to
Impossible Differential

CP versus KP?
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Data Complexity of a Distinguishing Attack
PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

S · (p − 2−q)2 · ϕ
2
a,

where S is the size of a structure

For p = 2−q(C + 1),

NTD =
2q+1

S · C2 · ϕa
2
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Data Complexity of a Distinguishing Attack
PS = 50% and ϕa = Φ−1(1− 2−a), with a the advantage

I Multidimensional Linear :

NML =
2(s+q+1)/2

C
· ϕa

I Truncated Differential :

NTD =
2−q+1

S · (p − 2−q)2 · ϕ
2
a,

where S is the size of a structure

For p = 2−q(C + 1), NTD =
(NML)2

2s · S
,

and if S = 2t , NTD = 2−n · (NML)2
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On the SS attack on PRESENT [Collard Standaert 09]

I It is observed and then heuristically assumed that the
capacity C decreases linearly with the number of rounds

I This estimatation of the capacity has been verified in
[Leander 11] (divided approximatively by 23 at each round
of the cipher)

I As in ML, it is assumed that the data complexity is

proportional to
2(q+1)/2

C

I In [Kerckhof et al 11], the attack is verified experimentally
I Theory and practice match for a small number of rounds
I A sensible difference is noticed for the attack on 18 rounds

of PRESENT
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On the SS Attack on PRESENT

From the strong link between SS and TD cryptanalysis, we can
show that :

I The data complexity estimate is correct when only one
structure is used (small number of rounds)

N =
2(q+1)/2

C
ϕa

I For more rounds (more structures) the data complexity is
equal to

N =
2q+1

S · C2ϕ
2
a

I Using the SS model of [Collard Standaert 09] one can only
perform an attack on 23 rounds (instead of on the 24
rounds originally claimed)
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KP ML and CP TD attack : An Example on
PRESENT

[Cho 09] :
I Distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round :

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 · 24 linear masks

16-key bits can be tested

I KP ML⇒ Guess 16 bits
Using the link between TD and ML

Chosen Plaintext⇒ Guess 4,8,12,16 bits
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KP ML and CP TD attack : An Example on
PRESENT

[Cho 09] :
I Distinguisher on 24 rounds
I KP ML attack on 26 rounds (inversion of the first and last

round)
First round :

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c3 bits are fixed

Fixation of 4 bits
12-key bits can be tested

I KP ML⇒ Guess 16 bits
Using the link between TD and ML

I CP TD⇒ Guess 4,8,12,16 bits
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Example of CP TD attack on 24 rounds of
PRESENT

I Fixing 4b bits in the first round

Data Complexity :

48

50

52

54

56

58

60

62

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

b = 1
b = 2
b = 3

KP

I Depending of the size of the fixation, the data complexity of
a CP ML attack can be smaller than for a KP ML attack
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Example of CP TD attack on 24 rounds of
PRESENT

Fixing 4 bits :

Model a Data Memory Time1 Time2

CP 10 254.75 229 254.75 270

KP 5 257.14 232 257.14 275

Time1: Complexity of the distillation phase
Time2: Complexity of the search phase

I Time and memory complexities of a CP TD attack can also
be smaller than for a KP ML attack
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Example of CP TD attack on 26 rounds of
PRESENT

58

59

60

61

62

63

64

65

66

2 4 6 8 10 12 14 16

lo
g(

N
)

advantage

b = 1
b = 2

KP

Model a Data Memory Time1 Time2

CP 4 263.16 229 263.16 276

KP 4 262.08 232 262.08 276

I A CP TD attack on 26 rounds of PRESENT
I The previous differential-type attack was on 19 rounds
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Remarks and Conclusions

I Every KP attack can be converted to a CP attack with
same complexity

I The previous example illustrate that a KP ML attack can,
up to some restrictions, be converted to a CP TD attack
with smaller complexity

I We can have similar reasoning for other statistical attacks :
For instance in [Bogdanov et al 12], a zero-correlation

distinguisher is converted to a CP integral attack
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